12#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
13#define EIGEN_COMPLEX_EIGEN_SOLVER_H
61 typedef typename MatrixType::Scalar
Scalar;
125 template<
typename InputType>
212 template<
typename InputType>
253 void doComputeEigenvectors(
RealScalar matrixnorm);
254 void sortEigenvalues(
bool computeEigenvectors);
258template<
typename MatrixType>
259template<
typename InputType>
263 check_template_parameters();
270 m_schur.compute(
matrix.derived(), computeEigenvectors);
274 m_eivalues = m_schur.matrixT().diagonal();
275 if(computeEigenvectors)
276 doComputeEigenvectors(m_schur.matrixT().norm());
277 sortEigenvalues(computeEigenvectors);
280 m_isInitialized =
true;
281 m_eigenvectorsOk = computeEigenvectors;
286template<
typename MatrixType>
289 const Index n = m_eivalues.size();
291 matrixnorm =
numext::maxi(matrixnorm,(std::numeric_limits<RealScalar>::min)());
295 m_matX = EigenvectorType::Zero(
n,
n);
296 for(
Index k=
n-1 ; k>=0 ; k--)
298 m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
302 m_matX.coeffRef(
i,k) = -m_schur.matrixT().coeff(
i,k);
304 m_matX.coeffRef(
i,k) -= (m_schur.matrixT().row(
i).segment(
i+1,k-
i-1) * m_matX.col(k).segment(
i+1,k-
i-1)).value();
305 ComplexScalar z = m_schur.matrixT().coeff(
i,
i) - m_schur.matrixT().coeff(k,k);
306 if(z==ComplexScalar(0))
312 m_matX.coeffRef(
i,k) = m_matX.coeff(
i,k) / z;
317 m_eivec.noalias() = m_schur.matrixU() * m_matX;
319 for(
Index k=0 ; k<
n ; k++)
321 m_eivec.col(k).normalize();
326template<
typename MatrixType>
327void ComplexEigenSolver<MatrixType>::sortEigenvalues(
bool computeEigenvectors)
329 const Index n = m_eivalues.size();
333 m_eivalues.cwiseAbs().tail(
n-
i).minCoeff(&k);
337 std::swap(m_eivalues[k],m_eivalues[
i]);
338 if(computeEigenvectors)
339 m_eivec.col(
i).swap(m_eivec.col(k));
int n
Definition BiCGSTAB_simple.cpp:1
int i
Definition BiCGSTAB_step_by_step.cpp:9
#define eigen_assert(x)
Definition Macros.h:1037
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE)
Definition StaticAssert.h:187
int rows
Definition Tutorial_commainit_02.cpp:1
int cols
Definition Tutorial_commainit_02.cpp:1
Scalar Scalar int size
Definition benchVecAdd.cpp:17
NumTraits< Scalar >::Real RealScalar
Definition bench_gemm.cpp:47
Computes eigenvalues and eigenvectors of general complex matrices.
Definition ComplexEigenSolver.h:46
const EigenvalueType & eigenvalues() const
Returns the eigenvalues of given matrix.
Definition ComplexEigenSolver.h:182
ComplexEigenSolver & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition ComplexEigenSolver.h:226
EigenvectorType m_eivec
Definition ComplexEigenSolver.h:245
EigenvalueType m_eivalues
Definition ComplexEigenSolver.h:246
ComplexEigenSolver()
Default constructor.
Definition ComplexEigenSolver.h:92
std::complex< RealScalar > ComplexScalar
Complex scalar type for MatrixType.
Definition ComplexEigenSolver.h:71
const EigenvectorType & eigenvectors() const
Returns the eigenvectors of given matrix.
Definition ComplexEigenSolver.h:157
bool m_isInitialized
Definition ComplexEigenSolver.h:248
EigenvectorType m_matX
Definition ComplexEigenSolver.h:250
MatrixType::Scalar Scalar
Scalar type for matrices of type MatrixType.
Definition ComplexEigenSolver.h:61
Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime > EigenvectorType
Type for matrix of eigenvectors as returned by eigenvectors().
Definition ComplexEigenSolver.h:85
ComplexEigenSolver(const EigenBase< InputType > &matrix, bool computeEigenvectors=true)
Constructor; computes eigendecomposition of given matrix.
Definition ComplexEigenSolver.h:126
NumTraits< Scalar >::Real RealScalar
Definition ComplexEigenSolver.h:62
ComplexEigenSolver(Index size)
Default Constructor with memory preallocation.
Definition ComplexEigenSolver.h:107
bool m_eigenvectorsOk
Definition ComplexEigenSolver.h:249
Eigen::Index Index
Definition ComplexEigenSolver.h:63
ComplexSchur< MatrixType > m_schur
Definition ComplexEigenSolver.h:247
static void check_template_parameters()
Definition ComplexEigenSolver.h:240
ComputationInfo info() const
Reports whether previous computation was successful.
Definition ComplexEigenSolver.h:219
_MatrixType MatrixType
Synonym for the template parameter _MatrixType.
Definition ComplexEigenSolver.h:50
Index getMaxIterations()
Returns the maximum number of iterations.
Definition ComplexEigenSolver.h:233
@ MaxColsAtCompileTime
Definition ComplexEigenSolver.h:57
@ Options
Definition ComplexEigenSolver.h:55
@ RowsAtCompileTime
Definition ComplexEigenSolver.h:53
@ ColsAtCompileTime
Definition ComplexEigenSolver.h:54
@ MaxRowsAtCompileTime
Definition ComplexEigenSolver.h:56
ComplexEigenSolver & compute(const EigenBase< InputType > &matrix, bool computeEigenvectors=true)
Computes eigendecomposition of given matrix.
Performs a complex Schur decomposition of a real or complex square matrix.
Definition ComplexSchur.h:52
Index getMaxIterations()
Returns the maximum number of iterations.
Definition ComplexSchur.h:235
ComputationInfo info() const
Reports whether previous computation was successful.
Definition ComplexSchur.h:217
ComplexSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition ComplexSchur.h:228
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:180
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
Definition common.h:110
ComputationInfo
Definition Constants.h:440
@ Success
Definition Constants.h:442
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Definition MathFunctions.h:1091
EIGEN_DEVICE_FUNC internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar)>::type real_ref(const Scalar &x)
Definition MathFunctions.h:1237
Namespace containing all symbols from the Eigen library.
Definition bench_norm.cpp:85
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:74
Definition EigenBase.h:30
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition NumTraits.h:233