TR-mbed 1.0
Loading...
Searching...
No Matches
Namespaces | Classes | Typedefs | Enumerations | Functions | Variables
Eigen Namespace Reference

Namespace containing all symbols from the Eigen library. More...

Namespaces

namespace  Architecture
 
namespace  bfloat16_impl
 
namespace  half_impl
 
namespace  HybridNonLinearSolverSpace
 
namespace  indexing
 
namespace  internal
 
namespace  LevenbergMarquardtSpace
 
namespace  numext
 
namespace  placeholders
 
namespace  symbolic
 
namespace  TensorSycl
 
namespace  test
 

Classes

class  aligned_allocator
 STL compatible allocator to use with types requiring a non standrad alignment. More...
 
class  aligned_allocator_indirection
 
class  AlignedBox
 An axis aligned box. More...
 
class  AMDOrdering
 
class  AngleAxis
 Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. More...
 
struct  AntiHermiticity
 
struct  AntiSymmetry
 
class  ArithmeticSequence
 
class  ArpackGeneralizedSelfAdjointEigenSolver
 
class  array
 
class  Array
 General-purpose arrays with easy API for coefficient-wise operations. More...
 
class  array< T, 0 >
 
class  ArrayBase
 Base class for all 1D and 2D array, and related expressions. More...
 
class  ArrayWrapper
 Expression of a mathematical vector or matrix as an array object. More...
 
struct  ArrayXpr
 
class  AutoDiffJacobian
 
class  AutoDiffScalar
 A scalar type replacement with automatic differentiation capability. More...
 
class  AutoDiffVector
 
struct  BandShape
 
class  Barrier
 
class  BDCSVD
 class Bidiagonal Divide and Conquer SVD More...
 
class  BenchTimer
 
struct  bfloat16
 
class  BiCGSTAB
 A bi conjugate gradient stabilized solver for sparse square problems. More...
 
class  Block
 Expression of a fixed-size or dynamic-size block. More...
 
class  BlockImpl
 
class  BlockImpl< const SparseMatrix< _Scalar, _Options, _StorageIndex >, BlockRows, BlockCols, true, Sparse >
 
class  BlockImpl< SparseMatrix< _Scalar, _Options, _StorageIndex >, BlockRows, BlockCols, true, Sparse >
 
class  BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Dense >
 
class  BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Sparse >
 
class  BlockImpl< XprType, BlockRows, BlockCols, true, Sparse >
 
class  BlockSparseMatrix
 A versatile sparse matrix representation where each element is a block. More...
 
class  BlockSparseMatrixView
 
class  BlockSparseTimeDenseProduct
 
class  BlockVectorReturn
 
class  BlockVectorView
 
class  CholmodBase
 The base class for the direct Cholesky factorization of Cholmod. More...
 
class  CholmodDecomposition
 A general Cholesky factorization and solver based on Cholmod. More...
 
class  CholmodSimplicialLDLT
 A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod. More...
 
class  CholmodSimplicialLLT
 A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod. More...
 
class  CholmodSupernodalLLT
 A supernodal Cholesky (LLT) factorization and solver based on Cholmod. More...
 
struct  CleanedUpDerType
 
class  COLAMDOrdering
 
class  ColPivHouseholderQR
 Householder rank-revealing QR decomposition of a matrix with column-pivoting. More...
 
class  CommaInitializer
 Helper class used by the comma initializer operator. More...
 
class  CompleteOrthogonalDecomposition
 Complete orthogonal decomposition (COD) of a matrix. More...
 
class  ComplexEigenSolver
 Computes eigenvalues and eigenvectors of general complex matrices. More...
 
class  ComplexSchur
 Performs a complex Schur decomposition of a real or complex square matrix. More...
 
struct  Cond
 
class  Conjugate
 
class  ConjugateGradient
 A conjugate gradient solver for sparse (or dense) self-adjoint problems. More...
 
struct  ConversionSubExprEval
 
struct  ConversionSubExprEval< true, Eval, EvalPointerType >
 
class  Cross
 
class  CwiseBinaryOp
 Generic expression where a coefficient-wise binary operator is applied to two expressions. More...
 
class  CwiseBinaryOpImpl
 
class  CwiseBinaryOpImpl< BinaryOp, Lhs, Rhs, Sparse >
 
class  CwiseNullaryOp
 Generic expression of a matrix where all coefficients are defined by a functor. More...
 
class  CwiseTernaryOp
 Generic expression where a coefficient-wise ternary operator is applied to two expressions. More...
 
class  CwiseTernaryOpImpl
 
class  CwiseUnaryOp
 Generic expression where a coefficient-wise unary operator is applied to an expression. More...
 
class  CwiseUnaryOpImpl
 
class  CwiseUnaryView
 Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector. More...
 
class  CwiseUnaryViewImpl
 
class  CwiseUnaryViewImpl< ViewOp, MatrixType, Dense >
 
struct  DefaultDevice
 
struct  Dense
 
class  DenseBase
 Base class for all dense matrices, vectors, and arrays. More...
 
class  DenseCoeffsBase
 
class  DenseCoeffsBase< Derived, DirectAccessors >
 Base class providing direct read-only coefficient access to matrices and arrays. More...
 
class  DenseCoeffsBase< Derived, DirectWriteAccessors >
 Base class providing direct read/write coefficient access to matrices and arrays. More...
 
class  DenseCoeffsBase< Derived, ReadOnlyAccessors >
 Base class providing read-only coefficient access to matrices and arrays. More...
 
class  DenseCoeffsBase< Derived, WriteAccessors >
 Base class providing read/write coefficient access to matrices and arrays. More...
 
struct  DenseFunctor
 
struct  DenseShape
 
struct  DenseSparseProductReturnType
 
class  DenseStorage
 
class  DenseStorage< T, 0, _Rows, _Cols, _Options >
 
class  DenseStorage< T, 0, _Rows, Dynamic, _Options >
 
class  DenseStorage< T, 0, Dynamic, _Cols, _Options >
 
class  DenseStorage< T, 0, Dynamic, Dynamic, _Options >
 
class  DenseStorage< T, Dynamic, _Rows, Dynamic, _Options >
 
class  DenseStorage< T, Dynamic, Dynamic, _Cols, _Options >
 
class  DenseStorage< T, Dynamic, Dynamic, Dynamic, _Options >
 
class  DenseStorage< T, Size, _Rows, Dynamic, _Options >
 
class  DenseStorage< T, Size, Dynamic, _Cols, _Options >
 
class  DenseStorage< T, Size, Dynamic, Dynamic, _Options >
 
class  DenseTimeSparseProduct
 
class  DGMRES
 A Restarted GMRES with deflation. This class implements a modification of the GMRES solver for sparse linear systems. The basis is built with modified Gram-Schmidt. At each restart, a few approximated eigenvectors corresponding to the smallest eigenvalues are used to build a preconditioner for the next cycle. This preconditioner for deflation can be combined with any other preconditioner, the IncompleteLUT for instance. The preconditioner is applied at right of the matrix and the combination is multiplicative. More...
 
class  Diagonal
 Expression of a diagonal/subdiagonal/superdiagonal in a matrix. More...
 
class  DiagonalBase
 
class  DiagonalMatrix
 Represents a diagonal matrix with its storage. More...
 
class  DiagonalPreconditioner
 A preconditioner based on the digonal entries. More...
 
class  DiagonalProduct
 
struct  DiagonalShape
 
class  DiagonalWrapper
 Expression of a diagonal matrix. More...
 
struct  DimensionList
 
struct  DSizes
 
class  DynamicSGroup
 Dynamic symmetry group. More...
 
class  DynamicSGroupFromTemplateArgs
 
class  DynamicSkylineMatrix
 
class  DynamicSparseMatrix
 A sparse matrix class designed for matrix assembly purpose. More...
 
struct  eigen_assert_exception
 
struct  eigen_static_assert_exception
 
class  EigenBase
 
struct  EigenConvolutionKernel
 
struct  EigenConvolutionKernel< Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor, Buffer_accessor, convolution_type::CONV1D >
 
struct  EigenConvolutionKernel< Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor, Buffer_accessor, convolution_type::CONV2D >
 
struct  EigenConvolutionKernel< Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor, Buffer_accessor, convolution_type::CONV3D >
 
class  EigenSolver
 Computes eigenvalues and eigenvectors of general matrices. More...
 
class  EigenTest
 
class  EulerAngles
 Represents a rotation in a 3 dimensional space as three Euler angles. More...
 
class  EulerSystem
 Represents a fixed Euler rotation system. More...
 
class  EventCount
 
class  Flagged
 
class  ForceAlignedAccess
 Enforce aligned packet loads and stores regardless of what is requested. More...
 
class  FullPivHouseholderQR
 Householder rank-revealing QR decomposition of a matrix with full pivoting. More...
 
class  FullPivLU
 LU decomposition of a matrix with complete pivoting, and related features. More...
 
struct  general_product_to_triangular_selector
 
struct  general_product_to_triangular_selector< MatrixType, ProductType, UpLo, false >
 
struct  general_product_to_triangular_selector< MatrixType, ProductType, UpLo, true >
 
class  GeneralizedEigenSolver
 Computes the generalized eigenvalues and eigenvectors of a pair of general matrices. More...
 
class  GeneralizedSelfAdjointEigenSolver
 Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem. More...
 
struct  GenericNumTraits
 
class  GMRES
 A GMRES solver for sparse square problems. More...
 
struct  half
 
struct  Hermiticity
 
class  HessenbergDecomposition
 Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation. More...
 
class  Homogeneous
 Expression of one (or a set of) homogeneous vector(s) More...
 
struct  HomogeneousShape
 
class  HouseholderQR
 Householder QR decomposition of a matrix. More...
 
class  HouseholderSequence
 Sequence of Householder reflections acting on subspaces with decreasing size. More...
 
class  HybridNonLinearSolver
 Finds a zero of a system of n nonlinear functions in n variables by a modification of the Powell hybrid method ("dogleg"). More...
 
class  Hyperplane
 A hyperplane. More...
 
class  IdentityPreconditioner
 A naive preconditioner which approximates any matrix as the identity matrix. More...
 
class  IDRS
 The Induced Dimension Reduction method (IDR(s)) is a short-recurrences Krylov method for sparse square problems. More...
 
class  IncompleteCholesky
 Modified Incomplete Cholesky with dual threshold. More...
 
class  IncompleteLU
 
class  IncompleteLUT
 Incomplete LU factorization with dual-threshold strategy. More...
 
class  IndexedView
 Expression of a non-sequential sub-matrix defined by arbitrary sequences of row and column indices. More...
 
class  IndexedViewImpl
 
struct  IndexPair
 
class  InnerIterator
 An InnerIterator allows to loop over the element of any matrix expression. More...
 
class  InnerStride
 Convenience specialization of Stride to specify only an inner stride See class Map for some examples. More...
 
class  Inverse
 Expression of the inverse of another expression. More...
 
class  InverseImpl
 
class  InverseImpl< PermutationType, PermutationStorage >
 
class  IOFormat
 Stores a set of parameters controlling the way matrices are printed. More...
 
class  IterationController
 Controls the iterations of the iterative solvers. More...
 
class  IterativeSolverBase
 Base class for linear iterative solvers. More...
 
class  IterScaling
 iterative scaling algorithm to equilibrate rows and column norms in matrices More...
 
class  JacobiRotation
 Rotation given by a cosine-sine pair. More...
 
class  JacobiSVD
 Two-sided Jacobi SVD decomposition of a rectangular matrix. More...
 
class  KdBVH
 A simple bounding volume hierarchy based on AlignedBox. More...
 
class  KLU
 
class  KroneckerProduct
 Kronecker tensor product helper class for dense matrices. More...
 
class  KroneckerProductBase
 The base class of dense and sparse Kronecker product. More...
 
class  KroneckerProductSparse
 Kronecker tensor product helper class for sparse matrices. More...
 
struct  LazyProductReturnType
 
class  LDLT
 Robust Cholesky decomposition of a matrix with pivoting. More...
 
class  LeastSquareDiagonalPreconditioner
 Jacobi preconditioner for LeastSquaresConjugateGradient. More...
 
class  LeastSquaresConjugateGradient
 A conjugate gradient solver for sparse (or dense) least-square problems. More...
 
class  LevenbergMarquardt
 Performs non linear optimization over a non-linear function, using a variant of the Levenberg Marquardt algorithm. More...
 
class  LLT
 Standard Cholesky decomposition (LL^T) of a matrix and associated features. More...
 
struct  MakeComplex
 
struct  MakeComplex< false >
 
struct  MakeComplex< true >
 
struct  MakePointer
 
class  Map
 A matrix or vector expression mapping an existing array of data. More...
 
class  Map< const Quaternion< _Scalar >, _Options >
 Quaternion expression mapping a constant memory buffer. More...
 
class  Map< const SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 
class  Map< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex >, _PacketAccess >
 
class  Map< Quaternion< _Scalar >, _Options >
 Expression of a quaternion from a memory buffer. More...
 
class  Map< SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 Specialization of class Map for SparseMatrix-like storage. More...
 
class  Map< Transpositions< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex >, PacketAccess >
 
class  MapBase
 
class  MapBase< Derived, ReadOnlyAccessors >
 Base class for dense Map and Block expression with direct access. More...
 
class  MapBase< Derived, WriteAccessors >
 Base class for non-const dense Map and Block expression with direct access. More...
 
class  MappedSkylineMatrix
 
class  MappedSparseMatrix
 Sparse matrix. More...
 
class  Matrix
 The matrix class, also used for vectors and row-vectors. More...
 
class  MatrixBase
 Base class for all dense matrices, vectors, and expressions. More...
 
class  MatrixComplexPowerReturnValue
 Proxy for the matrix power of some matrix (expression). More...
 
struct  MatrixExponentialReturnValue
 Proxy for the matrix exponential of some matrix (expression). More...
 
class  MatrixFunctionReturnValue
 Proxy for the matrix function of some matrix (expression). More...
 
class  MatrixLogarithmReturnValue
 Proxy for the matrix logarithm of some matrix (expression). More...
 
class  MatrixMarketIterator
 Iterator to browse matrices from a specified folder. More...
 
class  MatrixPower
 Class for computing matrix powers. More...
 
class  MatrixPowerAtomic
 Class for computing matrix powers. More...
 
class  MatrixPowerParenthesesReturnValue
 Proxy for the matrix power of some matrix. More...
 
class  MatrixPowerReturnValue
 Proxy for the matrix power of some matrix (expression). More...
 
class  MatrixSquareRootReturnValue
 Proxy for the matrix square root of some matrix (expression). More...
 
class  MatrixWrapper
 Expression of an array as a mathematical vector or matrix. More...
 
struct  MatrixXpr
 
struct  max_n_1
 
struct  max_n_1< 0 >
 
class  MaxSizeVector
 The MaxSizeVector class. More...
 
class  MetisOrdering
 
class  MINRES
 A minimal residual solver for sparse symmetric problems. More...
 
struct  MovableScalar
 
class  NaturalOrdering
 
class  NestByValue
 Expression which must be nested by value. More...
 
class  NoAlias
 Pseudo expression providing an operator = assuming no aliasing. More...
 
struct  NoOpOutputKernel
 
struct  Notification
 
class  NumericalDiff
 
class  NumTraits
 Holds information about the various numeric (i.e. scalar) types allowed by Eigen. More...
 
struct  NumTraits< AnnoyingScalar >
 
struct  NumTraits< Array< Scalar, Rows, Cols, Options, MaxRows, MaxCols > >
 
struct  NumTraits< AutoDiffScalar< DerType > >
 
struct  NumTraits< bool >
 
struct  NumTraits< boost::multiprecision::detail::expression< T1, T2, T3, T4, T5 > >
 
struct  NumTraits< double >
 
struct  NumTraits< Eigen::bfloat16 >
 
struct  NumTraits< Eigen::half >
 
struct  NumTraits< float >
 
struct  NumTraits< long double >
 
struct  NumTraits< MovableScalar< float > >
 
struct  NumTraits< Real >
 
struct  NumTraits< std::complex< _Real > >
 
struct  NumTraits< std::string >
 
struct  NumTraits< void >
 
class  OuterStride
 Convenience specialization of Stride to specify only an outer stride See class Map for some examples. More...
 
struct  PacketConverter
 
struct  PacketConverter< TensorEvaluator, SrcPacket, TgtPacket, 1, 1 >
 
struct  PacketConverter< TensorEvaluator, SrcPacket, TgtPacket, 1, TgtCoeffRatio >
 
struct  PacketConverter< TensorEvaluator, SrcPacket, TgtPacket, 2, 1 >
 
struct  PacketConverter< TensorEvaluator, SrcPacket, TgtPacket, 4, 1 >
 
struct  PacketConverter< TensorEvaluator, SrcPacket, TgtPacket, 8, 1 >
 
struct  PacketType
 
class  ParametrizedLine
 A parametrized line. More...
 
class  PardisoImpl
 
class  PardisoLDLT
 A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library. More...
 
class  PardisoLLT
 A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library. More...
 
class  PardisoLU
 A sparse direct LU factorization and solver based on the PARDISO library. More...
 
struct  partial_redux_dummy_func
 
class  PartialPivLU
 LU decomposition of a matrix with partial pivoting, and related features. More...
 
class  PartialReduxExpr
 Generic expression of a partially reduxed matrix. More...
 
struct  PartOf
 
struct  PartOf< ImagPart >
 
struct  PartOf< RealPart >
 
class  PastixBase
 
class  PastixLDLT
 A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library. More...
 
class  PastixLLT
 A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library. More...
 
class  PastixLU
 Interface to the PaStix solver. More...
 
class  PermutationBase
 Base class for permutations. More...
 
class  PermutationMatrix
 Permutation matrix. More...
 
struct  PermutationShape
 
struct  PermutationStorage
 
class  PermutationWrapper
 Class to view a vector of integers as a permutation matrix. More...
 
class  PlainObjectBase
 
class  PolynomialSolver
 A polynomial solver. More...
 
class  PolynomialSolver< _Scalar, 1 >
 
class  PolynomialSolverBase
 Defined to be inherited by polynomial solvers: it provides convenient methods such as. More...
 
class  Product
 Expression of the product of two arbitrary matrices or vectors. More...
 
class  ProductImpl
 
class  ProductImpl< Lhs, Rhs, Option, Dense >
 
struct  ProductReturnType
 
class  Quaternion
 The quaternion class used to represent 3D orientations and rotations. More...
 
class  QuaternionBase
 Base class for quaternion expressions. More...
 
class  RandomSetter
 The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access. More...
 
class  RealQZ
 Performs a real QZ decomposition of a pair of square matrices. More...
 
class  RealSchur
 Performs a real Schur decomposition of a square matrix. More...
 
class  Ref
 A matrix or vector expression mapping an existing expression. More...
 
class  Ref< const SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 
class  Ref< const SparseVector< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 
class  Ref< const TPlainObjectType, Options, StrideType >
 
class  Ref< SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 A sparse matrix expression referencing an existing sparse expression. More...
 
class  Ref< SparseVector< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 A sparse vector expression referencing an existing sparse vector expression. More...
 
class  RefBase
 
class  Replicate
 Expression of the multiple replication of a matrix or vector. More...
 
class  Reshaped
 Expression of a fixed-size or dynamic-size reshape. More...
 
class  ReshapedImpl
 
class  ReshapedImpl< XprType, Rows, Cols, Order, Dense >
 
class  ReturnByValue
 
class  Reverse
 Expression of the reverse of a vector or matrix. More...
 
class  Rotation2D
 Represents a rotation/orientation in a 2 dimensional space. More...
 
class  RotationBase
 Common base class for compact rotation representations. More...
 
class  RunQueue
 
class  ScalarBinaryOpTraits
 Determines whether the given binary operation of two numeric types is allowed and what the scalar return type is. More...
 
struct  ScalarBinaryOpTraits< AutoDiffScalar< DerType >, typename DerType::Scalar, BinOp >
 
struct  ScalarBinaryOpTraits< T, T, BinaryOp >
 
struct  ScalarBinaryOpTraits< T, typename NumTraits< typename internal::enable_if< NumTraits< T >::IsComplex, T >::type >::Real, BinaryOp >
 
struct  ScalarBinaryOpTraits< T, void, BinaryOp >
 
struct  ScalarBinaryOpTraits< typename DerType::Scalar, AutoDiffScalar< DerType >, BinOp >
 
struct  ScalarBinaryOpTraits< typename NumTraits< typename internal::enable_if< NumTraits< T >::IsComplex, T >::type >::Real, T, BinaryOp >
 
struct  ScalarBinaryOpTraits< void, T, BinaryOp >
 
struct  ScalarBinaryOpTraits< void, void, BinaryOp >
 
class  Select
 Expression of a coefficient wise version of the C++ ternary operator ?: More...
 
struct  selfadjoint_product_selector
 
struct  selfadjoint_product_selector< MatrixType, OtherType, UpLo, false >
 
struct  selfadjoint_product_selector< MatrixType, OtherType, UpLo, true >
 
struct  selfadjoint_rank1_update
 
struct  selfadjoint_rank1_update< Scalar, Index, ColMajor, UpLo, ConjLhs, ConjRhs >
 
struct  selfadjoint_rank1_update< Scalar, Index, RowMajor, UpLo, ConjLhs, ConjRhs >
 
class  SelfAdjointEigenSolver
 Computes eigenvalues and eigenvectors of selfadjoint matrices. More...
 
struct  SelfAdjointShape
 
class  SelfAdjointView
 Expression of a selfadjoint matrix from a triangular part of a dense matrix. More...
 
class  SGroup
 Symmetry group, initialized from template arguments. More...
 
class  SimplicialCholesky
 
class  SimplicialCholeskyBase
 A base class for direct sparse Cholesky factorizations. More...
 
class  SimplicialLDLT
 A direct sparse LDLT Cholesky factorizations without square root. More...
 
class  SimplicialLLT
 A direct sparse LLT Cholesky factorizations. More...
 
struct  Sizes
 
class  SkylineInplaceLU
 Inplace LU decomposition of a skyline matrix and associated features. More...
 
class  SkylineMatrix
 The main skyline matrix class. More...
 
class  SkylineMatrixBase
 Base class of any skyline matrices or skyline expressions. More...
 
class  SkylineProduct
 
struct  SkylineProductReturnType
 
class  SkylineStorage
 
class  SkylineVector
 
struct  SluMatrix
 
struct  SluMatrixMapHelper
 
struct  SluMatrixMapHelper< Matrix< Scalar, Rows, Cols, Options, MRows, MCols > >
 
struct  SluMatrixMapHelper< SparseMatrixBase< Derived > >
 
class  Solve
 Pseudo expression representing a solving operation. More...
 
class  SolveImpl
 
class  SolveImpl< Decomposition, RhsType, Dense >
 
class  SolverBase
 A base class for matrix decomposition and solvers. More...
 
struct  SolverShape
 
struct  SolverStorage
 
class  SolveWithGuess
 Pseudo expression representing a solving operation. More...
 
struct  Sparse
 
class  SparseCompressedBase
 Common base class for sparse [compressed]-{row|column}-storage format. More...
 
class  SparseDenseOuterProduct
 
struct  SparseDenseProductReturnType
 
class  SparseDiagonalProduct
 
struct  SparseFunctor
 
class  SparseLU
 Sparse supernodal LU factorization for general matrices. More...
 
struct  SparseLUMatrixLReturnType
 
struct  SparseLUMatrixUReturnType
 
class  SparseLUTransposeView
 
class  SparseMapBase
 
class  SparseMapBase< Derived, ReadOnlyAccessors >
 Common base class for Map and Ref instance of sparse matrix and vector. More...
 
class  SparseMapBase< Derived, WriteAccessors >
 Common base class for writable Map and Ref instance of sparse matrix and vector. More...
 
class  SparseMatrix
 A versatible sparse matrix representation. More...
 
class  SparseMatrixBase
 Base class of any sparse matrices or sparse expressions. More...
 
class  SparseQR
 Sparse left-looking QR factorization with numerical column pivoting. More...
 
struct  SparseQR_QProduct
 
struct  SparseQRMatrixQReturnType
 
struct  SparseQRMatrixQTransposeReturnType
 
class  SparseSelfAdjointView
 Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. More...
 
struct  SparseShape
 
class  SparseSolverBase
 A base class for sparse solvers. More...
 
class  SparseSparseProduct
 
struct  SparseSparseProductReturnType
 
class  SparseSymmetricPermutationProduct
 
class  SparseTimeDenseProduct
 
class  SparseVector
 a sparse vector class More...
 
class  SparseView
 Expression of a dense or sparse matrix with zero or too small values removed. More...
 
class  Spline
 A class representing multi-dimensional spline curves. More...
 
struct  SplineFitting
 Spline fitting methods. More...
 
struct  SplineTraits
 
struct  SplineTraits< Spline< _Scalar, _Dim, _Degree >, _DerivativeOrder >
 Compile-time attributes of the Spline class for fixed degree. More...
 
struct  SplineTraits< Spline< _Scalar, _Dim, _Degree >, Dynamic >
 Compile-time attributes of the Spline class for Dynamic degree. More...
 
class  SPQR
 Sparse QR factorization based on SuiteSparseQR library. More...
 
struct  SPQR_QProduct
 
struct  SPQRMatrixQReturnType
 
struct  SPQRMatrixQTransposeReturnType
 
class  StaticSGroup
 Static symmetry group. More...
 
struct  StdMapTraits
 
struct  StlThreadEnvironment
 
struct  StorageMemory
 
class  Stride
 Holds strides information for Map. More...
 
class  SuperLU
 A sparse direct LU factorization and solver based on the SuperLU library. More...
 
class  SuperLUBase
 The base class for the direct and incomplete LU factorization of SuperLU. More...
 
class  SVDBase
 Base class of SVD algorithms. More...
 
class  SwapWrapper
 
struct  Symmetry
 
class  Tensor
 The tensor class. More...
 
class  TensorAssignOp
 
class  TensorAsyncDevice
 Pseudo expression providing an operator = that will evaluate its argument asynchronously on the specified device. Currently only ThreadPoolDevice implements proper asynchronous execution, while the default and GPU devices just run the expression synchronously and call m_done() on completion.. More...
 
class  TensorBase
 The tensor base class. More...
 
class  TensorBase< Derived, ReadOnlyAccessors >
 
class  TensorBroadcastingOp
 
class  TensorChippingOp
 
class  TensorConcatenationOp
 Tensor concatenation class. More...
 
struct  TensorContractionEvaluatorBase
 
class  TensorContractionOp
 
struct  TensorContractionParams
 
class  TensorConversionOp
 Tensor conversion class. This class makes it possible to vectorize type casting operations when the number of scalars per packet in the source and the destination type differ. More...
 
class  TensorConvolutionOp
 
class  TensorCostModel
 
class  TensorCustomBinaryOp
 Tensor custom class. More...
 
class  TensorCustomUnaryOp
 Tensor custom class. More...
 
class  TensorCwiseBinaryOp
 
class  TensorCwiseNullaryOp
 
class  TensorCwiseTernaryOp
 
class  TensorCwiseUnaryOp
 
class  TensorDevice
 Pseudo expression providing an operator = that will evaluate its argument on the specified computing 'device' (GPU, thread pool, ...) More...
 
class  TensorEvalToOp
 
class  TensorEvaluator
 A cost model used to limit the number of threads used for evaluating tensor expression. More...
 
struct  TensorEvaluator< const Derived, Device >
 
struct  TensorEvaluator< const TensorAssignOp< LeftArgType, RightArgType >, Device >
 
struct  TensorEvaluator< const TensorBroadcastingOp< Broadcast, ArgType >, Device >
 
struct  TensorEvaluator< const TensorChippingOp< DimId, ArgType >, Device >
 
struct  TensorEvaluator< const TensorConcatenationOp< Axis, LeftArgType, RightArgType >, Device >
 
struct  TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >
 
struct  TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Eigen::SyclDevice >
 
struct  TensorEvaluator< const TensorConversionOp< TargetType, ArgType >, Device >
 
struct  TensorEvaluator< const TensorConvolutionOp< Indices, InputArgType, KernelArgType >, Device >
 
struct  TensorEvaluator< const TensorConvolutionOp< Indices, InputArgType, KernelArgType >, Eigen::SyclDevice >
 
struct  TensorEvaluator< const TensorCustomBinaryOp< CustomBinaryFunc, LhsXprType, RhsXprType >, Device >
 
struct  TensorEvaluator< const TensorCustomUnaryOp< CustomUnaryFunc, XprType >, Device >
 
struct  TensorEvaluator< const TensorCwiseBinaryOp< BinaryOp, LeftArgType, RightArgType >, Device >
 
struct  TensorEvaluator< const TensorCwiseNullaryOp< NullaryOp, ArgType >, Device >
 
struct  TensorEvaluator< const TensorCwiseTernaryOp< TernaryOp, Arg1Type, Arg2Type, Arg3Type >, Device >
 
struct  TensorEvaluator< const TensorCwiseUnaryOp< UnaryOp, ArgType >, Device >
 
struct  TensorEvaluator< const TensorEvalToOp< ArgType, MakePointer_ >, Device >
 
struct  TensorEvaluator< const TensorFFTOp< FFT, ArgType, FFTResultType, FFTDir >, Device >
 
struct  TensorEvaluator< const TensorForcedEvalOp< ArgType_ >, Device >
 
struct  TensorEvaluator< const TensorGeneratorOp< Generator, ArgType >, Device >
 
struct  TensorEvaluator< const TensorImagePatchOp< Rows, Cols, ArgType >, Device >
 
struct  TensorEvaluator< const TensorIndexTupleOp< ArgType >, Device >
 
struct  TensorEvaluator< const TensorInflationOp< Strides, ArgType >, Device >
 
struct  TensorEvaluator< const TensorLayoutSwapOp< ArgType >, Device >
 
struct  TensorEvaluator< const TensorPaddingOp< PaddingDimensions, ArgType >, Device >
 
struct  TensorEvaluator< const TensorPatchOp< PatchDim, ArgType >, Device >
 
struct  TensorEvaluator< const TensorReductionOp< Op, Dims, ArgType, MakePointer_ >, Device >
 
struct  TensorEvaluator< const TensorReductionOp< Op, Dims, ArgType, MakePointer_ >, Eigen::SyclDevice >
 
struct  TensorEvaluator< const TensorRef< Derived >, Device >
 
struct  TensorEvaluator< const TensorReshapingOp< NewDimensions, ArgType >, Device >
 
struct  TensorEvaluator< const TensorReverseOp< ReverseDimensions, ArgType >, Device >
 
struct  TensorEvaluator< const TensorScanOp< Op, ArgType >, Device >
 
struct  TensorEvaluator< const TensorSelectOp< IfArgType, ThenArgType, ElseArgType >, Device >
 
struct  TensorEvaluator< const TensorShufflingOp< Shuffle, ArgType >, Device >
 
struct  TensorEvaluator< const TensorSlicingOp< StartIndices, Sizes, ArgType >, Device >
 
struct  TensorEvaluator< const TensorStridingOp< Strides, ArgType >, Device >
 
struct  TensorEvaluator< const TensorStridingSlicingOp< StartIndices, StopIndices, Strides, ArgType >, Device >
 
struct  TensorEvaluator< const TensorTraceOp< Dims, ArgType >, Device >
 
struct  TensorEvaluator< const TensorTupleReducerOp< ReduceOp, Dims, ArgType >, Device >
 
struct  TensorEvaluator< const TensorVolumePatchOp< Planes, Rows, Cols, ArgType >, Device >
 
struct  TensorEvaluator< TensorChippingOp< DimId, ArgType >, Device >
 
struct  TensorEvaluator< TensorConcatenationOp< Axis, LeftArgType, RightArgType >, Device >
 
struct  TensorEvaluator< TensorLayoutSwapOp< ArgType >, Device >
 
struct  TensorEvaluator< TensorRef< Derived >, Device >
 
struct  TensorEvaluator< TensorReshapingOp< NewDimensions, ArgType >, Device >
 
struct  TensorEvaluator< TensorReverseOp< ReverseDimensions, ArgType >, Device >
 
struct  TensorEvaluator< TensorShufflingOp< Shuffle, ArgType >, Device >
 
struct  TensorEvaluator< TensorSlicingOp< StartIndices, Sizes, ArgType >, Device >
 
struct  TensorEvaluator< TensorStridingOp< Strides, ArgType >, Device >
 
struct  TensorEvaluator< TensorStridingSlicingOp< StartIndices, StopIndices, Strides, ArgType >, Device >
 
class  TensorFFTOp
 
class  TensorFixedSize
 The fixed sized version of the tensor class. More...
 
class  TensorForcedEvalOp
 
class  TensorGeneratorOp
 Tensor generator class. More...
 
class  TensorImagePatchOp
 
class  TensorIndexTupleOp
 
class  TensorInflationOp
 
class  TensorLayoutSwapOp
 
class  TensorMap
 A tensor expression mapping an existing array of data. More...
 
class  TensorOpCost
 
class  TensorPaddingOp
 
class  TensorPatchOp
 
struct  TensorReductionEvaluatorBase
 
struct  TensorReductionEvaluatorBase< const TensorReductionOp< Op, Dims, ArgType, MakePointer_ >, Device >
 
class  TensorReductionOp
 
class  TensorRef
 A reference to a tensor expression The expression will be evaluated lazily (as much as possible). More...
 
class  TensorReshapingOp
 
class  TensorReverseOp
 
class  TensorScanOp
 
class  TensorSelectOp
 
class  TensorShufflingOp
 
class  TensorSlicingOp
 
class  TensorStorage
 
class  TensorStorage< T, DSizes< IndexType, NumIndices_ >, Options_ >
 
class  TensorStridingOp
 
class  TensorStridingSlicingOp
 
class  TensorTraceOp
 
class  TensorTupleReducerOp
 
class  TensorVolumePatchOp
 
class  ThreadLocal
 
class  ThreadPoolInterface
 
class  ThreadPoolTempl
 
class  Transform
 Represents an homogeneous transformation in a N dimensional space. More...
 
class  Translation
 Represents a translation transformation. More...
 
class  Transpose
 Expression of the transpose of a matrix. More...
 
class  Transpose< TranspositionsBase< TranspositionsDerived > >
 
class  TransposeImpl
 
class  TransposeImpl< MatrixType, Dense >
 
class  TransposeImpl< MatrixType, Sparse >
 
class  Transpositions
 Represents a sequence of transpositions (row/column interchange) More...
 
class  TranspositionsBase
 
struct  TranspositionsShape
 
struct  TranspositionsStorage
 
class  TranspositionsWrapper
 
class  TriangularBase
 Base class for triangular part in a matrix. More...
 
struct  TriangularShape
 
class  TriangularView
 Expression of a triangular part in a matrix. More...
 
class  TriangularViewImpl
 
class  TriangularViewImpl< _MatrixType, _Mode, Dense >
 Base class for a triangular part in a dense matrix. More...
 
class  TriangularViewImpl< MatrixType, Mode, Sparse >
 Base class for a triangular part in a sparse matrix. More...
 
class  Tridiagonalization
 Tridiagonal decomposition of a selfadjoint matrix. More...
 
class  Triplet
 A small structure to hold a non zero as a triplet (i,j,value). More...
 
struct  Tuple
 
class  UmfPackLU
 A sparse LU factorization and solver based on UmfPack. More...
 
class  UniformScaling
 Represents a generic uniform scaling transformation. More...
 
class  VectorBlock
 Expression of a fixed-size or dynamic-size sub-vector. More...
 
class  VectorwiseOp
 Pseudo expression providing broadcasting and partial reduction operations. More...
 
class  WithFormat
 Pseudo expression providing matrix output with given format. More...
 

Typedefs

typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
 
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
 The Index type as used for the API.
 
typedef std::complex< double > dcomplex
 
typedef std::complex< float > scomplex
 
typedef int BlasIndex
 
typedef AngleAxis< float > AngleAxisf
 
typedef AngleAxis< double > AngleAxisd
 
typedef Quaternion< float > Quaternionf
 
typedef Quaternion< double > Quaterniond
 
typedef Map< Quaternion< float >, 0 > QuaternionMapf
 
typedef Map< Quaternion< double >, 0 > QuaternionMapd
 
typedef Map< Quaternion< float >, AlignedQuaternionMapAlignedf
 
typedef Map< Quaternion< double >, AlignedQuaternionMapAlignedd
 
typedef Rotation2D< float > Rotation2Df
 
typedef Rotation2D< double > Rotation2Dd
 
typedef DiagonalMatrix< float, 2 > AlignedScaling2f
 
typedef DiagonalMatrix< double, 2 > AlignedScaling2d
 
typedef DiagonalMatrix< float, 3 > AlignedScaling3f
 
typedef DiagonalMatrix< double, 3 > AlignedScaling3d
 
typedef Transform< float, 2, IsometryIsometry2f
 
typedef Transform< float, 3, IsometryIsometry3f
 
typedef Transform< double, 2, IsometryIsometry2d
 
typedef Transform< double, 3, IsometryIsometry3d
 
typedef Transform< float, 2, AffineAffine2f
 
typedef Transform< float, 3, AffineAffine3f
 
typedef Transform< double, 2, AffineAffine2d
 
typedef Transform< double, 3, AffineAffine3d
 
typedef Transform< float, 2, AffineCompactAffineCompact2f
 
typedef Transform< float, 3, AffineCompactAffineCompact3f
 
typedef Transform< double, 2, AffineCompactAffineCompact2d
 
typedef Transform< double, 3, AffineCompactAffineCompact3d
 
typedef Transform< float, 2, ProjectiveProjective2f
 
typedef Transform< float, 3, ProjectiveProjective3f
 
typedef Transform< double, 2, ProjectiveProjective2d
 
typedef Transform< double, 3, ProjectiveProjective3d
 
typedef Translation< float, 2 > Translation2f
 
typedef Translation< double, 2 > Translation2d
 
typedef Translation< float, 3 > Translation3f
 
typedef Translation< double, 3 > Translation3d
 
typedef ThreadPoolTempl< StlThreadEnvironmentThreadPool
 
typedef Spline< float, 2 > Spline2f
 2D float B-spline with dynamic degree.
 
typedef Spline< float, 3 > Spline3f
 3D float B-spline with dynamic degree.
 
typedef Spline< double, 2 > Spline2d
 2D double B-spline with dynamic degree.
 
typedef Spline< double, 3 > Spline3d
 3D double B-spline with dynamic degree.
 

Enumerations

enum  { CPU_TIMER = 0 , REAL_TIMER = 1 }
 
enum  CholmodMode { CholmodAuto , CholmodSimplicialLLt , CholmodSupernodalLLt , CholmodLDLt }
 
enum  { Large = 2 , Small = 3 }
 
enum  { DontAlignCols = 1 }
 
enum  { StreamPrecision = -1 , FullPrecision = -2 }
 
enum  UpLoType {
  Lower =0x1 , Upper =0x2 , UnitDiag =0x4 , ZeroDiag =0x8 ,
  UnitLower =UnitDiag|Lower , UnitUpper =UnitDiag|Upper , StrictlyLower =ZeroDiag|Lower , StrictlyUpper =ZeroDiag|Upper ,
  SelfAdjoint =0x10 , Symmetric =0x20
}
 
enum  AlignmentType {
  Unaligned =0 , Aligned8 =8 , Aligned16 =16 , Aligned32 =32 ,
  Aligned64 =64 , Aligned128 =128 , AlignedMask =255 , Aligned =16 ,
  AlignedMax = Unaligned
}
 
enum  DirectionType { Vertical , Horizontal , BothDirections }
 
enum  TraversalType {
  DefaultTraversal , LinearTraversal , InnerVectorizedTraversal , LinearVectorizedTraversal ,
  SliceVectorizedTraversal , InvalidTraversal , AllAtOnceTraversal
}
 
enum  UnrollingType { NoUnrolling , InnerUnrolling , CompleteUnrolling }
 
enum  SpecializedType { Specialized , BuiltIn }
 
enum  StorageOptions { ColMajor = 0 , RowMajor = 0x1 , AutoAlign = 0 , DontAlign = 0x2 }
 
enum  SideType { OnTheLeft = 1 , OnTheRight = 2 }
 
enum  NaNPropagationOptions { PropagateFast = 0 , PropagateNaN , PropagateNumbers }
 
enum  NoChange_t { NoChange }
 
enum  Sequential_t { Sequential }
 
enum  Default_t { Default }
 
enum  AmbiVectorMode { IsDense = 0 , IsSparse }
 
enum  AccessorLevels { ReadOnlyAccessors , WriteAccessors , DirectAccessors , DirectWriteAccessors }
 
enum  DecompositionOptions {
  Pivoting = 0x01 , NoPivoting = 0x02 , ComputeFullU = 0x04 , ComputeThinU = 0x08 ,
  ComputeFullV = 0x10 , ComputeThinV = 0x20 , EigenvaluesOnly = 0x40 , ComputeEigenvectors = 0x80 ,
  EigVecMask = EigenvaluesOnly | ComputeEigenvectors , Ax_lBx = 0x100 , ABx_lx = 0x200 , BAx_lx = 0x400 ,
  GenEigMask = Ax_lBx | ABx_lx | BAx_lx
}
 
enum  QRPreconditioners { NoQRPreconditioner , HouseholderQRPreconditioner , ColPivHouseholderQRPreconditioner , FullPivHouseholderQRPreconditioner }
 
enum  ComputationInfo { Success = 0 , NumericalIssue = 1 , NoConvergence = 2 , InvalidInput = 3 }
 
enum  TransformTraits { Isometry = 0x1 , Affine = 0x2 , AffineCompact = 0x10 | Affine , Projective = 0x20 }
 
enum  ProductImplType {
  DefaultProduct =0 , LazyProduct , AliasFreeProduct , CoeffBasedProductMode ,
  LazyCoeffBasedProductMode , OuterProduct , InnerProduct , GemvProduct ,
  GemmProduct
}
 
enum  Action { GetAction , SetAction }
 
enum  AutoSize_t { AutoSize }
 
enum  SimplicialCholeskyMode { SimplicialCholeskyLLT , SimplicialCholeskyLDLT }
 
enum  { StandardCompressedFormat = 2 }
 
enum class  convolution_type { CONV1D , CONV2D , CONV3D }
 
enum  FFTResultType { RealPart = 0 , ImagPart = 1 , BothParts = 2 }
 
enum  FFTDirection { FFT_FORWARD = 0 , FFT_REVERSE = 1 }
 
enum  PaddingType { PADDING_VALID = 1 , PADDING_SAME = 2 }
 
enum  { NegationFlag = 0x01 , ConjugationFlag = 0x02 }
 
enum  { GlobalRealFlag = 0x01 , GlobalImagFlag = 0x02 , GlobalZeroFlag = 0x03 }
 
enum  EulerAxis { EULER_X = 1 , EULER_Y = 2 , EULER_Z = 3 }
 Representation of a fixed signed rotation axis for EulerSystem. More...
 
enum  NumericalDiffMode { Forward , Central }
 
enum  AdditionalProductEvaluationMode { SkylineTimeDenseProduct , SkylineTimeSkylineProduct , DenseTimeSkylineProduct }
 
enum  { IsSkyline = SkylineBit }
 
enum  { SPD = 0x100 , NonSymmetric = 0x0 }
 

Functions

template<typename _Scalar , int _Options, typename _StorageIndex >
cholmod_sparse viewAsCholmod (Ref< SparseMatrix< _Scalar, _Options, _StorageIndex > > mat)
 
template<typename _Scalar , int _Options, typename _Index >
const cholmod_sparse viewAsCholmod (const SparseMatrix< _Scalar, _Options, _Index > &mat)
 
template<typename _Scalar , int _Options, typename _Index >
const cholmod_sparse viewAsCholmod (const SparseVector< _Scalar, _Options, _Index > &mat)
 
template<typename _Scalar , int _Options, typename _Index , unsigned int UpLo>
cholmod_sparse viewAsCholmod (const SparseSelfAdjointView< const SparseMatrix< _Scalar, _Options, _Index >, UpLo > &mat)
 
template<typename Derived >
cholmod_dense viewAsCholmod (MatrixBase< Derived > &mat)
 
template<typename Scalar , int Flags, typename StorageIndex >
MappedSparseMatrix< Scalar, Flags, StorageIndex > viewAsEigen (cholmod_sparse &cm)
 
template<typename FirstType , typename SizeType , typename IncrType >
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type, typename internal::cleanup_seq_incr< IncrType >::type > seqN (FirstType first, SizeType size, IncrType incr)
 
template<typename FirstType , typename SizeType >
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type > seqN (FirstType first, SizeType size)
 
template<typename FirstType , typename LastType >
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, Index > >::type seq (FirstType f, LastType l)
 
template<typename FirstTypeDerived , typename LastType >
internal::enable_if<!symbolic::is_symbolic< LastType >::value, ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< symbolic::NegateExpr< FirstTypeDerived >, symbolic::ValueExpr<> >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > >::type seq (const symbolic::BaseExpr< FirstTypeDerived > &f, LastType l)
 
template<typename FirstType , typename LastTypeDerived >
internal::enable_if<!symbolic::is_symbolic< FirstType >::value, ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::ValueExpr<> >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > >::type seq (FirstType f, const symbolic::BaseExpr< LastTypeDerived > &l)
 
template<typename FirstTypeDerived , typename LastTypeDerived >
ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > seq (const symbolic::BaseExpr< FirstTypeDerived > &f, const symbolic::BaseExpr< LastTypeDerived > &l)
 
template<typename FirstType , typename LastType , typename IncrType >
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, Index, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type seq (FirstType f, LastType l, IncrType incr)
 
template<typename FirstTypeDerived , typename LastType , typename IncrType >
internal::enable_if<!symbolic::is_symbolic< LastType >::value, ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< symbolic::NegateExpr< FirstTypeDerived >, symbolic::ValueExpr<> >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type seq (const symbolic::BaseExpr< FirstTypeDerived > &f, LastType l, IncrType incr)
 
template<typename FirstType , typename LastTypeDerived , typename IncrType >
internal::enable_if<!symbolic::is_symbolic< FirstType >::value, ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::ValueExpr<> >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type seq (FirstType f, const symbolic::BaseExpr< LastTypeDerived > &l, IncrType incr)
 
template<typename FirstTypeDerived , typename LastTypeDerived , typename IncrType >
ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, typename internal::cleanup_seq_incr< IncrType >::type > seq (const symbolic::BaseExpr< FirstTypeDerived > &f, const symbolic::BaseExpr< LastTypeDerived > &l, IncrType incr)
 
template<typename MatrixDerived , typename PermutationDerived >
EIGEN_DEVICE_FUNC const Product< MatrixDerived, PermutationDerived, AliasFreeProductoperator* (const MatrixBase< MatrixDerived > &matrix, const PermutationBase< PermutationDerived > &permutation)
 
template<typename PermutationDerived , typename MatrixDerived >
EIGEN_DEVICE_FUNC const Product< PermutationDerived, MatrixDerived, AliasFreeProductoperator* (const PermutationBase< PermutationDerived > &permutation, const MatrixBase< MatrixDerived > &matrix)
 
std::ptrdiff_t l1CacheSize ()
 
std::ptrdiff_t l2CacheSize ()
 
std::ptrdiff_t l3CacheSize ()
 
void setCpuCacheSizes (std::ptrdiff_t l1, std::ptrdiff_t l2, std::ptrdiff_t l3)
 
void initParallel ()
 
int nbThreads ()
 
void setNbThreads (int v)
 
template<typename MatrixDerived , typename TranspositionsDerived >
EIGEN_DEVICE_FUNC const Product< MatrixDerived, TranspositionsDerived, AliasFreeProductoperator* (const MatrixBase< MatrixDerived > &matrix, const TranspositionsBase< TranspositionsDerived > &transpositions)
 
template<typename TranspositionsDerived , typename MatrixDerived >
EIGEN_DEVICE_FUNC const Product< TranspositionsDerived, MatrixDerived, AliasFreeProductoperator* (const TranspositionsBase< TranspositionsDerived > &transpositions, const MatrixBase< MatrixDerived > &matrix)
 
template<int N>
internal::FixedInt< Nfix ()
 
template<int N, typename T >
internal::VariableAndFixedInt< Nfix (T val)
 
UniformScaling< float > Scaling (float s)
 
UniformScaling< double > Scaling (double s)
 
template<typename RealScalar >
UniformScaling< std::complex< RealScalar > > Scaling (const std::complex< RealScalar > &s)
 
template<typename Scalar >
DiagonalMatrix< Scalar, 2 > Scaling (const Scalar &sx, const Scalar &sy)
 
template<typename Scalar >
DiagonalMatrix< Scalar, 3 > Scaling (const Scalar &sx, const Scalar &sy, const Scalar &sz)
 
template<typename Derived >
const DiagonalWrapper< const Derived > Scaling (const MatrixBase< Derived > &coeffs)
 
template<typename Derived , typename OtherDerived >
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type umeyama (const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true)
 Returns the transformation between two point sets.
 
template<typename OtherDerived , typename VectorsType , typename CoeffsType , int Side>
internal::matrix_type_times_scalar_type< typenameVectorsType::Scalar, OtherDerived >::Type operator* (const MatrixBase< OtherDerived > &other, const HouseholderSequence< VectorsType, CoeffsType, Side > &h)
 Computes the product of a matrix with a Householder sequence.
 
template<typename VectorsType , typename CoeffsType >
HouseholderSequence< VectorsType, CoeffsType > householderSequence (const VectorsType &v, const CoeffsType &h)
 Convenience function for constructing a Householder sequence.
 
template<typename VectorsType , typename CoeffsType >
HouseholderSequence< VectorsType, CoeffsType, OnTheRightrightHouseholderSequence (const VectorsType &v, const CoeffsType &h)
 Convenience function for constructing a Householder sequence.
 
int klu_solve (klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], klu_common *Common, double)
 A sparse LU factorization and solver based on KLU.
 
int klu_solve (klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex< double >B[], klu_common *Common, std::complex< double >)
 
int klu_tsolve (klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], klu_common *Common, double)
 
int klu_tsolve (klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex< double >B[], klu_common *Common, std::complex< double >)
 
klu_numeric * klu_factor (int Ap[], int Ai[], double Ax[], klu_symbolic *Symbolic, klu_common *Common, double)
 
klu_numeric * klu_factor (int Ap[], int Ai[], std::complex< double > Ax[], klu_symbolic *Symbolic, klu_common *Common, std::complex< double >)
 
template<typename DenseDerived , typename SparseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > operator+ (const MatrixBase< DenseDerived > &a, const SparseMatrixBase< SparseDerived > &b)
 
template<typename SparseDerived , typename DenseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > operator+ (const SparseMatrixBase< SparseDerived > &a, const MatrixBase< DenseDerived > &b)
 
template<typename DenseDerived , typename SparseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > operator- (const MatrixBase< DenseDerived > &a, const SparseMatrixBase< SparseDerived > &b)
 
template<typename SparseDerived , typename DenseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > operator- (const SparseMatrixBase< SparseDerived > &a, const MatrixBase< DenseDerived > &b)
 
template<typename SparseDerived , typename PermDerived >
const Product< SparseDerived, PermDerived, AliasFreeProductoperator* (const SparseMatrixBase< SparseDerived > &matrix, const PermutationBase< PermDerived > &perm)
 
template<typename SparseDerived , typename PermDerived >
const Product< PermDerived, SparseDerived, AliasFreeProductoperator* (const PermutationBase< PermDerived > &perm, const SparseMatrixBase< SparseDerived > &matrix)
 
template<typename SparseDerived , typename PermutationType >
const Product< SparseDerived, Inverse< PermutationType >, AliasFreeProductoperator* (const SparseMatrixBase< SparseDerived > &matrix, const InverseImpl< PermutationType, PermutationStorage > &tperm)
 
template<typename SparseDerived , typename PermutationType >
const Product< Inverse< PermutationType >, SparseDerived, AliasFreeProductoperator* (const InverseImpl< PermutationType, PermutationStorage > &tperm, const SparseMatrixBase< SparseDerived > &matrix)
 
void umfpack_defaults (double control[UMFPACK_CONTROL], double, int)
 
void umfpack_defaults (double control[UMFPACK_CONTROL], std::complex< double >, int)
 
void umfpack_defaults (double control[UMFPACK_CONTROL], double, SuiteSparse_long)
 
void umfpack_defaults (double control[UMFPACK_CONTROL], std::complex< double >, SuiteSparse_long)
 
void umfpack_report_info (double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, int)
 
void umfpack_report_info (double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex< double >, int)
 
void umfpack_report_info (double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, SuiteSparse_long)
 
void umfpack_report_info (double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex< double >, SuiteSparse_long)
 
void umfpack_report_status (double control[UMFPACK_CONTROL], int status, double, int)
 
void umfpack_report_status (double control[UMFPACK_CONTROL], int status, std::complex< double >, int)
 
void umfpack_report_status (double control[UMFPACK_CONTROL], int status, double, SuiteSparse_long)
 
void umfpack_report_status (double control[UMFPACK_CONTROL], int status, std::complex< double >, SuiteSparse_long)
 
void umfpack_report_control (double control[UMFPACK_CONTROL], double, int)
 
void umfpack_report_control (double control[UMFPACK_CONTROL], std::complex< double >, int)
 
void umfpack_report_control (double control[UMFPACK_CONTROL], double, SuiteSparse_long)
 
void umfpack_report_control (double control[UMFPACK_CONTROL], std::complex< double >, SuiteSparse_long)
 
void umfpack_free_numeric (void **Numeric, double, int)
 
void umfpack_free_numeric (void **Numeric, std::complex< double >, int)
 
void umfpack_free_numeric (void **Numeric, double, SuiteSparse_long)
 
void umfpack_free_numeric (void **Numeric, std::complex< double >, SuiteSparse_long)
 
void umfpack_free_symbolic (void **Symbolic, double, int)
 
void umfpack_free_symbolic (void **Symbolic, std::complex< double >, int)
 
void umfpack_free_symbolic (void **Symbolic, double, SuiteSparse_long)
 
void umfpack_free_symbolic (void **Symbolic, std::complex< double >, SuiteSparse_long)
 
int umfpack_symbolic (int n_row, int n_col, const int Ap[], const int Ai[], const double Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_symbolic (int n_row, int n_col, const int Ap[], const int Ai[], const std::complex< double > Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_symbolic (SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_symbolic (SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex< double > Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_numeric (const int Ap[], const int Ai[], const double Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_numeric (const int Ap[], const int Ai[], const std::complex< double > Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_numeric (const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_numeric (const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex< double > Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_solve (int sys, const int Ap[], const int Ai[], const double Ax[], double X[], const double B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_solve (int sys, const int Ap[], const int Ai[], const std::complex< double > Ax[], std::complex< double > X[], const std::complex< double > B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_solve (int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], double X[], const double B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_solve (int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex< double > Ax[], std::complex< double > X[], const std::complex< double > B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_get_lunz (int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
 
int umfpack_get_lunz (int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex< double >)
 
SuiteSparse_long umfpack_get_lunz (SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, SuiteSparse_long *n_col, SuiteSparse_long *nz_udiag, void *Numeric, double)
 
SuiteSparse_long umfpack_get_lunz (SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, SuiteSparse_long *n_col, SuiteSparse_long *nz_udiag, void *Numeric, std::complex< double >)
 
int umfpack_get_numeric (int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
 
int umfpack_get_numeric (int Lp[], int Lj[], std::complex< double > Lx[], int Up[], int Ui[], std::complex< double > Ux[], int P[], int Q[], std::complex< double > Dx[], int *do_recip, double Rs[], void *Numeric)
 
SuiteSparse_long umfpack_get_numeric (SuiteSparse_long Lp[], SuiteSparse_long Lj[], double Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], double Ux[], SuiteSparse_long P[], SuiteSparse_long Q[], double Dx[], SuiteSparse_long *do_recip, double Rs[], void *Numeric)
 
SuiteSparse_long umfpack_get_numeric (SuiteSparse_long Lp[], SuiteSparse_long Lj[], std::complex< double > Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], std::complex< double > Ux[], SuiteSparse_long P[], SuiteSparse_long Q[], std::complex< double > Dx[], SuiteSparse_long *do_recip, double Rs[], void *Numeric)
 
int umfpack_get_determinant (double *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], int)
 
int umfpack_get_determinant (std::complex< double > *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], int)
 
SuiteSparse_long umfpack_get_determinant (double *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], SuiteSparse_long)
 
SuiteSparse_long umfpack_get_determinant (std::complex< double > *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], SuiteSparse_long)
 
template<>
AnnoyingScalar test_precision< AnnoyingScalar > ()
 
template<>
Real test_precision< Real > ()
 
template<typename Lhs , typename Rhs >
const Product< Lhs, Rhs > prod (const Lhs &lhs, const Rhs &rhs)
 
template<typename Lhs , typename Rhs >
const Product< Lhs, Rhs, LazyProductlazyprod (const Lhs &lhs, const Rhs &rhs)
 
template<typename DstXprType , typename SrcXprType >
EIGEN_STRONG_INLINE DstXprType & copy_using_evaluator (const EigenBase< DstXprType > &dst, const SrcXprType &src)
 
template<typename DstXprType , template< typename > class StorageBase, typename SrcXprType >
EIGEN_STRONG_INLINE const DstXprType & copy_using_evaluator (const NoAlias< DstXprType, StorageBase > &dst, const SrcXprType &src)
 
template<typename DstXprType , typename SrcXprType >
EIGEN_STRONG_INLINE DstXprType & copy_using_evaluator (const PlainObjectBase< DstXprType > &dst, const SrcXprType &src)
 
template<typename DstXprType , typename SrcXprType >
void add_assign_using_evaluator (const DstXprType &dst, const SrcXprType &src)
 
template<typename DstXprType , typename SrcXprType >
void subtract_assign_using_evaluator (const DstXprType &dst, const SrcXprType &src)
 
template<typename DstXprType , typename SrcXprType >
void multiply_assign_using_evaluator (const DstXprType &dst, const SrcXprType &src)
 
template<typename DstXprType , typename SrcXprType >
void divide_assign_using_evaluator (const DstXprType &dst, const SrcXprType &src)
 
template<typename DstXprType , typename SrcXprType >
void swap_using_evaluator (const DstXprType &dst, const SrcXprType &src)
 
template<typename T1 , typename T2 >
internal::enable_if< internal::is_same< T1, T2 >::value, bool >::type is_same_type (const T1 &, const T2 &)
 
template<typename T >
NumTraits< T >::Real test_precision ()
 
template<>
float test_precision< float > ()
 
template<>
double test_precision< double > ()
 
template<>
long double test_precision< long double > ()
 
template<>
float test_precision< std::complex< float > > ()
 
template<>
double test_precision< std::complex< double > > ()
 
template<>
long double test_precision< std::complex< long double > > ()
 
bool test_isApprox (const std::complex< float > &a, const std::complex< float > &b)
 
bool test_isMuchSmallerThan (const std::complex< float > &a, const std::complex< float > &b)
 
bool test_isApprox (const std::complex< double > &a, const std::complex< double > &b)
 
bool test_isMuchSmallerThan (const std::complex< double > &a, const std::complex< double > &b)
 
bool test_isApprox (const std::complex< long double > &a, const std::complex< long double > &b)
 
bool test_isMuchSmallerThan (const std::complex< long double > &a, const std::complex< long double > &b)
 
bool test_isApprox (const long double &a, const long double &b)
 
bool test_isMuchSmallerThan (const long double &a, const long double &b)
 
bool test_isApproxOrLessThan (const long double &a, const long double &b)
 
template<typename T1 , typename T2 >
NumTraits< typenameT1::RealScalar >::NonInteger test_relative_error (const EigenBase< T1 > &a, const EigenBase< T2 > &b)
 
template<typename T1 , typename T2 >
T1::RealScalar test_relative_error (const T1 &a, const T2 &b, const typename T1::Coefficients *=0)
 
template<typename T1 , typename T2 >
T1::Scalar test_relative_error (const T1 &a, const T2 &b, const typename T1::MatrixType *=0)
 
template<typename S , int D>
test_relative_error (const Translation< S, D > &a, const Translation< S, D > &b)
 
template<typename S , int D, int O>
test_relative_error (const ParametrizedLine< S, D, O > &a, const ParametrizedLine< S, D, O > &b)
 
template<typename S , int D>
test_relative_error (const AlignedBox< S, D > &a, const AlignedBox< S, D > &b)
 
template<typename T1 , typename T2 >
T1::RealScalar test_relative_error (const MatrixBase< T1 > &a, const SparseMatrixBase< T2 > &b)
 
template<typename T1 , typename T2 >
T1::RealScalar test_relative_error (const SparseMatrixBase< T1 > &a, const MatrixBase< T2 > &b)
 
template<typename T1 , typename T2 >
T1::RealScalar test_relative_error (const SparseMatrixBase< T1 > &a, const SparseMatrixBase< T2 > &b)
 
template<typename T1 , typename T2 >
NumTraits< typenameNumTraits< T1 >::Real >::NonInteger test_relative_error (const T1 &a, const T2 &b, typename internal::enable_if< internal::is_arithmetic< typename NumTraits< T1 >::Real >::value, T1 >::type *=0)
 
template<typename T >
T test_relative_error (const Rotation2D< T > &a, const Rotation2D< T > &b)
 
template<typename T >
T test_relative_error (const AngleAxis< T > &a, const AngleAxis< T > &b)
 
template<typename Type1 , typename Type2 >
bool test_isApprox (const Type1 &a, const Type2 &b, typename Type1::Scalar *=0)
 
template<typename T >
NumTraits< typenameT::Scalar >::Real get_test_precision (const T &, const typename T::Scalar *=0)
 
template<typename T >
NumTraits< T >::Real get_test_precision (const T &, typename internal::enable_if< internal::is_arithmetic< typename NumTraits< T >::Real >::value, T >::type *=0)
 
template<typename Type1 , typename Type2 >
bool verifyIsApprox (const Type1 &a, const Type2 &b)
 
template<typename Scalar , typename ScalarRef >
bool test_isApproxWithRef (const Scalar &a, const Scalar &b, const ScalarRef &ref)
 
template<typename Derived1 , typename Derived2 >
bool test_isMuchSmallerThan (const MatrixBase< Derived1 > &m1, const MatrixBase< Derived2 > &m2)
 
template<typename Derived >
bool test_isMuchSmallerThan (const MatrixBase< Derived > &m, const typename NumTraits< typename internal::traits< Derived >::Scalar >::Real &s)
 
template<typename Derived >
bool test_isUnitary (const MatrixBase< Derived > &m)
 
template<typename T , typename U >
bool test_is_equal (const T &actual, const U &expected, bool expect_equal=true)
 
template<typename MatrixType >
void createRandomPIMatrixOfRank (Index desired_rank, Index rows, Index cols, MatrixType &m)
 
template<typename PermutationVectorType >
void randomPermutationVector (PermutationVectorType &v, Index size)
 
template<typename T >
bool isNotNaN (const T &x)
 
template<typename T >
bool isPlusInf (const T &x)
 
template<typename T >
bool isMinusInf (const T &x)
 
Box2d bounding_box (const Vector2d &v)
 
template<typename IndexType , int NumDims>
std::ostream & operator<< (std::ostream &os, const DSizes< IndexType, NumDims > &dims)
 
template<typename Dims1 , typename Dims2 >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool dimensions_match (Dims1 dims1, Dims2 dims2)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TconstCast (const T *data)
 
template<typename ADerived , typename BDerived , typename XDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseTernaryOp< internal::scalar_betainc_op< typename XDerived::Scalar >, const ADerived, const BDerived, const XDerived > betainc (const ADerived &a, const BDerived &b, const XDerived &x)
 
template<typename T >
std::ostream & operator<< (std::ostream &os, const TensorBase< T, ReadOnlyAccessors > &expr)
 
template<typename T1 , typename T2 >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const T1 & choose (Cond< true >, const T1 &first, const T2 &)
 
template<typename T1 , typename T2 >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const T2 & choose (Cond< false >, const T1 &, const T2 &second)
 
template<typename T , typename X , typename Y >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T divup (const X x, const Y y)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T divup (const T x, const T y)
 
template<typename U , typename V >
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator== (const Tuple< U, V > &x, const Tuple< U, V > &y)
 
template<typename U , typename V >
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator!= (const Tuple< U, V > &x, const Tuple< U, V > &y)
 
template<class T , std::size_t N>
EIGEN_DEVICE_FUNC bool operator== (const array< T, N > &lhs, const array< T, N > &rhs)
 
template<typename NewDerType >
AutoDiffScalar< NewDerType > MakeAutoDiffScalar (const typename NewDerType::Scalar &value, const NewDerType &der)
 
template<typename DerType >
const AutoDiffScalar< DerType > & conj (const AutoDiffScalar< DerType > &x)
 
template<typename DerType >
const AutoDiffScalar< DerType > & real (const AutoDiffScalar< DerType > &x)
 
template<typename DerType >
DerType::Scalar imag (const AutoDiffScalar< DerType > &)
 
template<typename DerType , typename T >
CleanedUpDerType< DerType >::type() min (const AutoDiffScalar< DerType > &x, const T &y)
 
template<typename DerType , typename T >
CleanedUpDerType< DerType >::type() max (const AutoDiffScalar< DerType > &x, const T &y)
 
template<typename DerType , typename T >
CleanedUpDerType< DerType >::type() min (const T &x, const AutoDiffScalar< DerType > &y)
 
template<typename DerType , typename T >
CleanedUpDerType< DerType >::type() max (const T &x, const AutoDiffScalar< DerType > &y)
 
template<typename DerType >
CleanedUpDerType< DerType >::type() min (const AutoDiffScalar< DerType > &x, const AutoDiffScalar< DerType > &y)
 
template<typename DerType >
CleanedUpDerType< DerType >::type() max (const AutoDiffScalar< DerType > &x, const AutoDiffScalar< DerType > &y)
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (abs, using std::abs;return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() *(x.value()< 0 ? -1 :1));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sqrt, using std::sqrt;Scalar sqrtx=sqrt(x.value());return Eigen::MakeAutoDiffScalar(sqrtx, x.derivatives() *(Scalar(0.5)/sqrtx));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sin, using std::sin;using std::cos;return Eigen::MakeAutoDiffScalar(sin(x.value()), x.derivatives() *cos(x.value()));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (log, using std::log;return Eigen::MakeAutoDiffScalar(log(x.value()), x.derivatives() *(Scalar(1)/x.value()));) template< typename DerType > inline const Eigen
 
template<typename DerTypeA , typename DerTypeB >
const AutoDiffScalar< Matrix< typename internal::traits< typename internal::remove_all< DerTypeA >::type >::Scalar, Dynamic, 1 > > atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b)
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (tan, using std::tan;using std::cos;return Eigen::MakeAutoDiffScalar(tan(x.value()), x.derivatives() *(Scalar(1)/numext::abs2(cos(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (acos, using std::sqrt;using std::acos;return Eigen::MakeAutoDiffScalar(acos(x.value()), x.derivatives() *(Scalar(-1)/sqrt(1-numext::abs2(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh
 
 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sinh, using std::sinh;using std::cosh;return Eigen::MakeAutoDiffScalar(sinh(x.value()), x.derivatives() *cosh(x.value()));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh
 
template<typename BVH , typename Intersector >
void BVIntersect (const BVH &tree, Intersector &intersector)
 
template<typename BVH1 , typename BVH2 , typename Intersector >
void BVIntersect (const BVH1 &tree1, const BVH2 &tree2, Intersector &intersector)
 
template<typename BVH , typename Minimizer >
Minimizer::Scalar BVMinimize (const BVH &tree, Minimizer &minimizer)
 
template<typename BVH1 , typename BVH2 , typename Minimizer >
Minimizer::Scalar BVMinimize (const BVH1 &tree1, const BVH2 &tree2, Minimizer &minimizer)
 
void ssaupd_ (int *ido, char *bmat, int *n, char *which, int *nev, float *tol, float *resid, int *ncv, float *v, int *ldv, int *iparam, int *ipntr, float *workd, float *workl, int *lworkl, int *info)
 
void sseupd_ (int *rvec, char *All, int *select, float *d, float *z, int *ldz, float *sigma, char *bmat, int *n, char *which, int *nev, float *tol, float *resid, int *ncv, float *v, int *ldv, int *iparam, int *ipntr, float *workd, float *workl, int *lworkl, int *ierr)
 
void dsaupd_ (int *ido, char *bmat, int *n, char *which, int *nev, double *tol, double *resid, int *ncv, double *v, int *ldv, int *iparam, int *ipntr, double *workd, double *workl, int *lworkl, int *info)
 
void dseupd_ (int *rvec, char *All, int *select, double *d, double *z, int *ldz, double *sigma, char *bmat, int *n, char *which, int *nev, double *tol, double *resid, int *ncv, double *v, int *ldv, int *iparam, int *ipntr, double *workd, double *workl, int *lworkl, int *ierr)
 
template<typename A , typename B >
KroneckerProduct< A, BkroneckerProduct (const MatrixBase< A > &a, const MatrixBase< B > &b)
 
template<typename A , typename B >
KroneckerProductSparse< A, BkroneckerProduct (const EigenBase< A > &a, const EigenBase< B > &b)
 
template<typename MatrixType , typename ResultType >
void matrix_sqrt_quasi_triangular (const MatrixType &arg, ResultType &result)
 Compute matrix square root of quasi-triangular matrix.
 
template<typename MatrixType , typename ResultType >
void matrix_sqrt_triangular (const MatrixType &arg, ResultType &result)
 Compute matrix square root of triangular matrix.
 
template<typename Polynomials , typename T >
T poly_eval_horner (const Polynomials &poly, const T &x)
 
template<typename Polynomials , typename T >
T poly_eval (const Polynomials &poly, const T &x)
 
template<typename Polynomial >
NumTraits< typenamePolynomial::Scalar >::Real cauchy_max_bound (const Polynomial &poly)
 
template<typename Polynomial >
NumTraits< typenamePolynomial::Scalar >::Real cauchy_min_bound (const Polynomial &poly)
 
template<typename RootVector , typename Polynomial >
void roots_to_monicPolynomial (const RootVector &rv, Polynomial &poly)
 
bool getMarketHeader (const std::string &filename, int &sym, bool &iscomplex, bool &isvector)
 
template<typename SparseMatrixType >
bool loadMarket (SparseMatrixType &mat, const std::string &filename)
 
template<typename VectorType >
bool loadMarketVector (VectorType &vec, const std::string &filename)
 
template<typename SparseMatrixType >
bool saveMarket (const SparseMatrixType &mat, const std::string &filename, int sym=0)
 
template<typename VectorType >
bool saveMarketVector (const VectorType &vec, const std::string &filename)
 
template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i0_op< typename Derived::Scalar >, const Derived > bessel_i0 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i0e_op< typename Derived::Scalar >, const Derived > bessel_i0e (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i1_op< typename Derived::Scalar >, const Derived > bessel_i1 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i1e_op< typename Derived::Scalar >, const Derived > bessel_i1e (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k0_op< typename Derived::Scalar >, const Derived > bessel_k0 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k0e_op< typename Derived::Scalar >, const Derived > bessel_k0e (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k1_op< typename Derived::Scalar >, const Derived > bessel_k1 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k1e_op< typename Derived::Scalar >, const Derived > bessel_k1e (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_j0_op< typename Derived::Scalar >, const Derived > bessel_j0 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_y0_op< typename Derived::Scalar >, const Derived > bessel_y0 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_j1_op< typename Derived::Scalar >, const Derived > bessel_j1 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_y1_op< typename Derived::Scalar >, const Derived > bessel_y1 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived , typename ExponentDerived >
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_igamma_op< typename Derived::Scalar >, const Derived, const ExponentDerived > igamma (const Eigen::ArrayBase< Derived > &a, const Eigen::ArrayBase< ExponentDerived > &x)
 
template<typename Derived , typename ExponentDerived >
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_igamma_der_a_op< typename Derived::Scalar >, const Derived, const ExponentDerived > igamma_der_a (const Eigen::ArrayBase< Derived > &a, const Eigen::ArrayBase< ExponentDerived > &x)
 
template<typename AlphaDerived , typename SampleDerived >
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_gamma_sample_der_alpha_op< typename AlphaDerived::Scalar >, const AlphaDerived, const SampleDerived > gamma_sample_der_alpha (const Eigen::ArrayBase< AlphaDerived > &alpha, const Eigen::ArrayBase< SampleDerived > &sample)
 
template<typename Derived , typename ExponentDerived >
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_igammac_op< typename Derived::Scalar >, const Derived, const ExponentDerived > igammac (const Eigen::ArrayBase< Derived > &a, const Eigen::ArrayBase< ExponentDerived > &x)
 
template<typename DerivedN , typename DerivedX >
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_polygamma_op< typename DerivedX::Scalar >, const DerivedN, const DerivedX > polygamma (const Eigen::ArrayBase< DerivedN > &n, const Eigen::ArrayBase< DerivedX > &x)
 
template<typename ArgADerived , typename ArgBDerived , typename ArgXDerived >
EIGEN_STRONG_INLINE const Eigen::CwiseTernaryOp< Eigen::internal::scalar_betainc_op< typename ArgXDerived::Scalar >, const ArgADerived, const ArgBDerived, const ArgXDerived > betainc (const Eigen::ArrayBase< ArgADerived > &a, const Eigen::ArrayBase< ArgBDerived > &b, const Eigen::ArrayBase< ArgXDerived > &x)
 
template<typename DerivedX , typename DerivedQ >
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_zeta_op< typename DerivedX::Scalar >, const DerivedX, const DerivedQ > zeta (const Eigen::ArrayBase< DerivedX > &x, const Eigen::ArrayBase< DerivedQ > &q)
 
template<typename SplineType , typename DerivativeType >
void derivativesImpl (const SplineType &spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType &der)
 
template<typename KnotVectorType >
void KnotAveraging (const KnotVectorType &parameters, DenseIndex degree, KnotVectorType &knots)
 Computes knot averages.
 
template<typename KnotVectorType , typename ParameterVectorType , typename IndexArray >
void KnotAveragingWithDerivatives (const ParameterVectorType &parameters, const unsigned int degree, const IndexArray &derivativeIndices, KnotVectorType &knots)
 Computes knot averages when derivative constraints are present. Note that this is a technical interpretation of the referenced article since the algorithm contained therein is incorrect as written.
 
template<typename PointArrayType , typename KnotVectorType >
void ChordLengths (const PointArrayType &pts, KnotVectorType &chord_lengths)
 Computes chord length parameters which are required for spline interpolation.
 
template<typename T , typename Derived >
T test_relative_error (const AlignedVector3< T > &a, const MatrixBase< Derived > &b)
 
template<typename Scalar , int Dim>
AlignedBox< Scalar, Dim > bounding_box (const Matrix< Scalar, Dim, 1 > &v)
 

Variables

EIGEN_DEVICE_FUNC const Eigen::ArrayBase< Derived > & exponents
 
const int Dynamic = -1
 
const int DynamicIndex = 0xffffff
 
const int UndefinedIncr = 0xfffffe
 
const int Infinity = -1
 
const int HugeCost = 10000
 
const unsigned int RowMajorBit = 0x1
 
const unsigned int EvalBeforeNestingBit = 0x2
 
EIGEN_DEPRECATED const unsigned int EvalBeforeAssigningBit = 0x4
 
const unsigned int PacketAccessBit = 0x8
 
const unsigned int ActualPacketAccessBit = 0x0
 
const unsigned int LinearAccessBit = 0x10
 
const unsigned int LvalueBit = 0x20
 
const unsigned int DirectAccessBit = 0x40
 
EIGEN_DEPRECATED const unsigned int AlignedBit = 0x80
 
const unsigned int NestByRefBit = 0x100
 
const unsigned int NoPreferredStorageOrderBit = 0x200
 
const unsigned int CompressedAccessBit = 0x400
 
const unsigned int HereditaryBits
 
const int AutoOrder = 2
 
const int CoherentAccessPattern = 0x1
 
const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern
 
const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern
 
const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern
 
Scalar expx = exp(x.value())
 
const unsigned int SkylineBit = 0x1200
 

Detailed Description

Namespace containing all symbols from the Eigen library.

Typedef Documentation

◆ AlignedScaling2d

◆ AlignedScaling2f

◆ AlignedScaling3d

◆ AlignedScaling3f

◆ BlasIndex

◆ dcomplex

typedef std::complex<double> Eigen::dcomplex

◆ DenseIndex

◆ Index

The Index type as used for the API.

To change this, #define the preprocessor symbol EIGEN_DEFAULT_DENSE_INDEX_TYPE.

See also
\blank Preprocessor directives, StorageIndex.
Examples
/home/runner/work/TR-mbed/TR-mbed/core/util/algorithms/eigen-3.4.0/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h.

◆ scomplex

typedef std::complex<float> Eigen::scomplex

◆ Spline2d

typedef Spline<double,2> Eigen::Spline2d

2D double B-spline with dynamic degree.

◆ Spline2f

typedef Spline<float,2> Eigen::Spline2f

2D float B-spline with dynamic degree.

◆ Spline3d

typedef Spline<double,3> Eigen::Spline3d

3D double B-spline with dynamic degree.

◆ Spline3f

typedef Spline<float,3> Eigen::Spline3f

3D float B-spline with dynamic degree.

◆ ThreadPool

◆ Translation2d

typedef Translation<double,2> Eigen::Translation2d

◆ Translation2f

typedef Translation<float, 2> Eigen::Translation2f

◆ Translation3d

typedef Translation<double,3> Eigen::Translation3d

◆ Translation3f

typedef Translation<float, 3> Eigen::Translation3f

Enumeration Type Documentation

◆ anonymous enum

anonymous enum
Enumerator
CPU_TIMER 
REAL_TIMER 

◆ anonymous enum

anonymous enum
Enumerator
IsSkyline 

◆ anonymous enum

anonymous enum
Enumerator
SPD 
NonSymmetric 

◆ anonymous enum

anonymous enum
Enumerator
Large 
Small 

◆ anonymous enum

anonymous enum
Enumerator
DontAlignCols 

◆ anonymous enum

anonymous enum
Enumerator
StreamPrecision 
FullPrecision 

◆ anonymous enum

anonymous enum
Enumerator
StandardCompressedFormat 

used by Ref<SparseMatrix> to specify whether the input storage must be in standard compressed form

◆ anonymous enum

anonymous enum
Enumerator
NegationFlag 
ConjugationFlag 

◆ anonymous enum

anonymous enum
Enumerator
GlobalRealFlag 
GlobalImagFlag 
GlobalZeroFlag 

◆ Action

Enumerator
GetAction 
SetAction 

◆ AdditionalProductEvaluationMode

Enumerator
SkylineTimeDenseProduct 
SkylineTimeSkylineProduct 
DenseTimeSkylineProduct 

◆ AmbiVectorMode

Enumerator
IsDense 
IsSparse 

◆ AutoSize_t

Enumerator
AutoSize 

◆ CholmodMode

Enumerator
CholmodAuto 
CholmodSimplicialLLt 
CholmodSupernodalLLt 
CholmodLDLt 

◆ convolution_type

enum class Eigen::convolution_type
strong
Enumerator
CONV1D 
CONV2D 
CONV3D 

◆ Default_t

Enumerator
Default 

◆ EulerAxis

Representation of a fixed signed rotation axis for EulerSystem.

Values here represent:

  • The axis of the rotation: X, Y or Z.
  • The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)

Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}

For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.

Enumerator
EULER_X 

the X axis

EULER_Y 

the Y axis

EULER_Z 

the Z axis

◆ FFTDirection

Enumerator
FFT_FORWARD 
FFT_REVERSE 

◆ FFTResultType

Enumerator
RealPart 
ImagPart 
BothParts 

◆ NoChange_t

Enumerator
NoChange 

◆ NumericalDiffMode

Enumerator
Forward 
Central 

◆ PaddingType

Enumerator
PADDING_VALID 
PADDING_SAME 

◆ ProductImplType

Enumerator
DefaultProduct 
LazyProduct 
AliasFreeProduct 
CoeffBasedProductMode 
LazyCoeffBasedProductMode 
OuterProduct 
InnerProduct 
GemvProduct 
GemmProduct 

◆ Sequential_t

Enumerator
Sequential 

◆ SimplicialCholeskyMode

Enumerator
SimplicialCholeskyLLT 
SimplicialCholeskyLDLT 

◆ SpecializedType

Enumerator
Specialized 
BuiltIn 

◆ TraversalType

Enumerator
DefaultTraversal 
LinearTraversal 
InnerVectorizedTraversal 
LinearVectorizedTraversal 
SliceVectorizedTraversal 
InvalidTraversal 
AllAtOnceTraversal 

◆ UnrollingType

Enumerator
NoUnrolling 
InnerUnrolling 
CompleteUnrolling 

Function Documentation

◆ add_assign_using_evaluator()

template<typename DstXprType , typename SrcXprType >
void Eigen::add_assign_using_evaluator ( const DstXprType &  dst,
const SrcXprType &  src 
)

◆ atan2()

template<typename DerTypeA , typename DerTypeB >
const AutoDiffScalar< Matrix< typename internal::traits< typename internal::remove_all< DerTypeA >::type >::Scalar, Dynamic, 1 > > Eigen::atan2 ( const AutoDiffScalar< DerTypeA > &  a,
const AutoDiffScalar< DerTypeB > &  b 
)
inline

◆ bessel_i0()

template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i0_op< typename Derived::Scalar >, const Derived > Eigen::bessel_i0 ( const Eigen::ArrayBase< Derived > &  x)
Returns
an expression of the coefficient-wise i0(x) to the given arrays.

It returns the modified Bessel function of the first kind of order zero.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of i0(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_i0()

◆ bessel_i0e()

template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i0e_op< typename Derived::Scalar >, const Derived > Eigen::bessel_i0e ( const Eigen::ArrayBase< Derived > &  x)
Returns
an expression of the coefficient-wise i0e(x) to the given arrays.

It returns the exponentially scaled modified Bessel function of the first kind of order zero.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of i0e(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_i0e()

◆ bessel_i1()

template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i1_op< typename Derived::Scalar >, const Derived > Eigen::bessel_i1 ( const Eigen::ArrayBase< Derived > &  x)
Returns
an expression of the coefficient-wise i1(x) to the given arrays.

It returns the modified Bessel function of the first kind of order one.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of i1(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_i1()

◆ bessel_i1e()

template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i1e_op< typename Derived::Scalar >, const Derived > Eigen::bessel_i1e ( const Eigen::ArrayBase< Derived > &  x)
Returns
an expression of the coefficient-wise i1e(x) to the given arrays.

It returns the exponentially scaled modified Bessel function of the first kind of order one.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of i1e(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_i1e()

◆ bessel_j0()

template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_j0_op< typename Derived::Scalar >, const Derived > Eigen::bessel_j0 ( const Eigen::ArrayBase< Derived > &  x)
Returns
an expression of the coefficient-wise j0(x) to the given arrays.

It returns the Bessel function of the first kind of order zero.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of j0(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_j0()

◆ bessel_j1()

template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_j1_op< typename Derived::Scalar >, const Derived > Eigen::bessel_j1 ( const Eigen::ArrayBase< Derived > &  x)
Returns
an expression of the coefficient-wise j1(x) to the given arrays.

It returns the modified Bessel function of the first kind of order one.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of j1(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_j1()

◆ bessel_k0()

template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k0_op< typename Derived::Scalar >, const Derived > Eigen::bessel_k0 ( const Eigen::ArrayBase< Derived > &  x)
Returns
an expression of the coefficient-wise k0(x) to the given arrays.

It returns the modified Bessel function of the second kind of order zero.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of k0(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_k0()

◆ bessel_k0e()

template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k0e_op< typename Derived::Scalar >, const Derived > Eigen::bessel_k0e ( const Eigen::ArrayBase< Derived > &  x)
Returns
an expression of the coefficient-wise k0e(x) to the given arrays.

It returns the exponentially scaled modified Bessel function of the second kind of order zero.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of k0e(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_k0e()

◆ bessel_k1()

template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k1_op< typename Derived::Scalar >, const Derived > Eigen::bessel_k1 ( const Eigen::ArrayBase< Derived > &  x)
Returns
an expression of the coefficient-wise k1(x) to the given arrays.

It returns the modified Bessel function of the second kind of order one.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of k1(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_k1()

◆ bessel_k1e()

template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k1e_op< typename Derived::Scalar >, const Derived > Eigen::bessel_k1e ( const Eigen::ArrayBase< Derived > &  x)
Returns
an expression of the coefficient-wise k1e(x) to the given arrays.

It returns the exponentially scaled modified Bessel function of the second kind of order one.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of k1e(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_k1e()

◆ bessel_y0()

template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_y0_op< typename Derived::Scalar >, const Derived > Eigen::bessel_y0 ( const Eigen::ArrayBase< Derived > &  x)
Returns
an expression of the coefficient-wise y0(x) to the given arrays.

It returns the Bessel function of the second kind of order zero.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of y0(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_y0()

◆ bessel_y1()

template<typename Derived >
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_y1_op< typename Derived::Scalar >, const Derived > Eigen::bessel_y1 ( const Eigen::ArrayBase< Derived > &  x)
Returns
an expression of the coefficient-wise y1(x) to the given arrays.

It returns the Bessel function of the second kind of order one.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of y1(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_y1()

◆ betainc() [1/2]

template<typename ADerived , typename BDerived , typename XDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorCwiseTernaryOp< internal::scalar_betainc_op< typename XDerived::Scalar >, const ADerived, const BDerived, const XDerived > Eigen::betainc ( const ADerived &  a,
const BDerived &  b,
const XDerived &  x 
)

\cpp11

Returns
an expression of the coefficient-wise betainc(x, a, b) to the given tensors.

This function computes the regularized incomplete beta function (integral).

◆ betainc() [2/2]

template<typename ArgADerived , typename ArgBDerived , typename ArgXDerived >
EIGEN_STRONG_INLINE const Eigen::CwiseTernaryOp< Eigen::internal::scalar_betainc_op< typename ArgXDerived::Scalar >, const ArgADerived, const ArgBDerived, const ArgXDerived > Eigen::betainc ( const Eigen::ArrayBase< ArgADerived > &  a,
const Eigen::ArrayBase< ArgBDerived > &  b,
const Eigen::ArrayBase< ArgXDerived > &  x 
)

\cpp11

Returns
an expression of the coefficient-wise betainc(x, a, b) to the given arrays.

This function computes the regularized incomplete beta function (integral).

Note
This function supports only float and double scalar types in c++11 mode. To support other scalar types, or float/double in non c++11 mode, the user has to provide implementations of betainc(T,T,T) for any scalar type T to be supported.
See also
Eigen::betainc(), Eigen::lgamma()

◆ bounding_box() [1/2]

template<typename Scalar , int Dim>
AlignedBox< Scalar, Dim > Eigen::bounding_box ( const Matrix< Scalar, Dim, 1 > &  v)

◆ bounding_box() [2/2]

Box2d Eigen::bounding_box ( const Vector2d &  v)

◆ BVIntersect() [1/2]

template<typename BVH , typename Intersector >
void Eigen::BVIntersect ( const BVH &  tree,
Intersector &  intersector 
)

Given a BVH, runs the query encapsulated by intersector. The Intersector type must provide the following members:

bool intersectVolume(const BVH::Volume &volume) //returns true if volume intersects the query
bool intersectObject(const BVH::Object &object) //returns true if the search should terminate immediately

◆ BVIntersect() [2/2]

template<typename BVH1 , typename BVH2 , typename Intersector >
void Eigen::BVIntersect ( const BVH1 &  tree1,
const BVH2 &  tree2,
Intersector &  intersector 
)

Given two BVH's, runs the query on their Cartesian product encapsulated by intersector. The Intersector type must provide the following members:

bool intersectVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2) //returns true if product of volumes intersects the query
bool intersectVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2) //returns true if the volume-object product intersects the query
bool intersectObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2) //returns true if the volume-object product intersects the query
bool intersectObjectObject(const BVH1::Object &o1, const BVH2::Object &o2) //returns true if the search should terminate immediately
M1<< 1, 2, 3, 4, 5, 6, 7, 8, 9;Map< RowVectorXf > v1(M1.data(), M1.size())
Map< RowVectorXf > v2(M2.data(), M2.size())

◆ BVMinimize() [1/2]

template<typename BVH , typename Minimizer >
Minimizer::Scalar Eigen::BVMinimize ( const BVH &  tree,
Minimizer &  minimizer 
)

Given a BVH, runs the query encapsulated by minimizer.

Returns
the minimum value. The Minimizer type must provide the following members:
typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
Scalar minimumOnVolume(const BVH::Volume &volume)
Scalar minimumOnObject(const BVH::Object &object)
SCALAR Scalar
Definition bench_gemm.cpp:46

◆ BVMinimize() [2/2]

template<typename BVH1 , typename BVH2 , typename Minimizer >
Minimizer::Scalar Eigen::BVMinimize ( const BVH1 &  tree1,
const BVH2 &  tree2,
Minimizer &  minimizer 
)

Given two BVH's, runs the query on their cartesian product encapsulated by minimizer.

Returns
the minimum value. The Minimizer type must provide the following members:
typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
Scalar minimumOnVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2)
Scalar minimumOnVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2)
Scalar minimumOnObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2)
Scalar minimumOnObjectObject(const BVH1::Object &o1, const BVH2::Object &o2)

◆ cauchy_max_bound()

template<typename Polynomial >
NumTraits< typenamePolynomial::Scalar >::Real Eigen::cauchy_max_bound ( const Polynomial &  poly)
inline
Returns
a maximum bound for the absolute value of any root of the polynomial.
Parameters
[in]poly: the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. $ 1 + 3x^2 $ is stored as a vector $ [ 1, 0, 3 ] $.
Precondition
the leading coefficient of the input polynomial poly must be non zero

◆ cauchy_min_bound()

template<typename Polynomial >
NumTraits< typenamePolynomial::Scalar >::Real Eigen::cauchy_min_bound ( const Polynomial &  poly)
inline
Returns
a minimum bound for the absolute value of any non zero root of the polynomial.
Parameters
[in]poly: the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. $ 1 + 3x^2 $ is stored as a vector $ [ 1, 0, 3 ] $.

◆ choose() [1/2]

template<typename T1 , typename T2 >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const T2 & Eigen::choose ( Cond< false >  ,
const T1 &  ,
const T2 &  second 
)

◆ choose() [2/2]

template<typename T1 , typename T2 >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const T1 & Eigen::choose ( Cond< true >  ,
const T1 &  first,
const T2 &   
)

◆ conj()

template<typename DerType >
const AutoDiffScalar< DerType > & Eigen::conj ( const AutoDiffScalar< DerType > &  x)
inline

◆ constCast()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T * Eigen::constCast ( const T data)

◆ copy_using_evaluator() [1/3]

template<typename DstXprType , typename SrcXprType >
EIGEN_STRONG_INLINE DstXprType & Eigen::copy_using_evaluator ( const EigenBase< DstXprType > &  dst,
const SrcXprType &  src 
)

◆ copy_using_evaluator() [2/3]

template<typename DstXprType , template< typename > class StorageBase, typename SrcXprType >
EIGEN_STRONG_INLINE const DstXprType & Eigen::copy_using_evaluator ( const NoAlias< DstXprType, StorageBase > &  dst,
const SrcXprType &  src 
)

◆ copy_using_evaluator() [3/3]

template<typename DstXprType , typename SrcXprType >
EIGEN_STRONG_INLINE DstXprType & Eigen::copy_using_evaluator ( const PlainObjectBase< DstXprType > &  dst,
const SrcXprType &  src 
)

◆ createRandomPIMatrixOfRank()

template<typename MatrixType >
void Eigen::createRandomPIMatrixOfRank ( Index  desired_rank,
Index  rows,
Index  cols,
MatrixType m 
)

Creates a random Partial Isometry matrix of given rank.

A partial isometry is a matrix all of whose singular values are either 0 or 1. This is very useful to test rank-revealing algorithms.

◆ derivativesImpl()

template<typename SplineType , typename DerivativeType >
void Eigen::derivativesImpl ( const SplineType &  spline,
typename SplineType::Scalar  u,
DenseIndex  order,
DerivativeType &  der 
)

◆ dimensions_match()

template<typename Dims1 , typename Dims2 >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool Eigen::dimensions_match ( Dims1  dims1,
Dims2  dims2 
)

◆ divide_assign_using_evaluator()

template<typename DstXprType , typename SrcXprType >
void Eigen::divide_assign_using_evaluator ( const DstXprType &  dst,
const SrcXprType &  src 
)

◆ divup() [1/2]

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::divup ( const T  x,
const T  y 
)

◆ divup() [2/2]

template<typename T , typename X , typename Y >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::divup ( const X  x,
const Y  y 
)

◆ dsaupd_()

void Eigen::dsaupd_ ( int ido,
char *  bmat,
int n,
char *  which,
int nev,
double *  tol,
double *  resid,
int ncv,
double *  v,
int ldv,
int iparam,
int ipntr,
double *  workd,
double *  workl,
int lworkl,
int info 
)

◆ dseupd_()

void Eigen::dseupd_ ( int rvec,
char *  All,
int select,
double *  d,
double *  z,
int ldz,
double *  sigma,
char *  bmat,
int n,
char *  which,
int nev,
double *  tol,
double *  resid,
int ncv,
double *  v,
int ldv,
int iparam,
int ipntr,
double *  workd,
double *  workl,
int lworkl,
int ierr 
)

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [1/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( abs  ,
using std::abs;return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() *(x.value()< 0 ? -1 :1));   
)

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [2/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( acos  ,
using std::sqrt;using std::acos;return Eigen::MakeAutoDiffScalar(acos(x.value()), x.derivatives() *(Scalar(-1)/sqrt(1-numext::abs2(x.value()))));   
)

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [3/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( log  ,
using std::log;return Eigen::MakeAutoDiffScalar(log(x.value()), x.derivatives() *(Scalar(1)/x.value()));   
) const

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [4/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( sin  ,
using std::sin;using std::cos;return Eigen::MakeAutoDiffScalar(sin(x.value()), x.derivatives() *cos(x.value()));   
)

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [5/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( sinh  ,
using std::sinh;using std::cosh;return Eigen::MakeAutoDiffScalar(sinh(x.value()), x.derivatives() *cosh(x.value()));   
)

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [6/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( sqrt  ,
using std::sqrt;Scalar  sqrtx = sqrt(x.value()); return Eigen::MakeAutoDiffScalar(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx)); 
)

◆ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY() [7/7]

Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY ( tan  ,
using std::tan;using std::cos;return Eigen::MakeAutoDiffScalar(tan(x.value()), x.derivatives() *(Scalar(1)/numext::abs2(cos(x.value()))));   
)

◆ fix() [1/2]

template<int N>
internal::FixedInt< N > Eigen::fix ( )
inline

◆ fix() [2/2]

template<int N, typename T >
internal::VariableAndFixedInt< N > Eigen::fix ( T  val)
inline

◆ gamma_sample_der_alpha()

template<typename AlphaDerived , typename SampleDerived >
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_gamma_sample_der_alpha_op< typename AlphaDerived::Scalar >, const AlphaDerived, const SampleDerived > Eigen::gamma_sample_der_alpha ( const Eigen::ArrayBase< AlphaDerived > &  alpha,
const Eigen::ArrayBase< SampleDerived > &  sample 
)

\cpp11

Returns
an expression of the coefficient-wise gamma_sample_der_alpha(alpha, sample) to the given arrays.

This function computes the coefficient-wise derivative of the sample of a Gamma(alpha, 1) random variable with respect to the parameter alpha.

Note
This function supports only float and double scalar types in c++11 mode. To support other scalar types, or float/double in non c++11 mode, the user has to provide implementations of gamma_sample_der_alpha(T,T) for any scalar type T to be supported.
See also
Eigen::igamma(), Eigen::lgamma()

◆ get_test_precision() [1/2]

template<typename T >
NumTraits< typenameT::Scalar >::Real Eigen::get_test_precision ( const T ,
const typename T::Scalar *  = 0 
)

◆ get_test_precision() [2/2]

template<typename T >
NumTraits< T >::Real Eigen::get_test_precision ( const T ,
typename internal::enable_if< internal::is_arithmetic< typename NumTraits< T >::Real >::value, T >::type *  = 0 
)

◆ getMarketHeader()

bool Eigen::getMarketHeader ( const std::string &  filename,
int sym,
bool &  iscomplex,
bool &  isvector 
)
inline

◆ igamma()

template<typename Derived , typename ExponentDerived >
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_igamma_op< typename Derived::Scalar >, const Derived, const ExponentDerived > Eigen::igamma ( const Eigen::ArrayBase< Derived > &  a,
const Eigen::ArrayBase< ExponentDerived > &  x 
)

\cpp11

Returns
an expression of the coefficient-wise igamma(a, x) to the given arrays.

This function computes the coefficient-wise incomplete gamma function.

Note
This function supports only float and double scalar types in c++11 mode. To support other scalar types, or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar type T to be supported.
See also
Eigen::igammac(), Eigen::lgamma()

◆ igamma_der_a()

template<typename Derived , typename ExponentDerived >
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_igamma_der_a_op< typename Derived::Scalar >, const Derived, const ExponentDerived > Eigen::igamma_der_a ( const Eigen::ArrayBase< Derived > &  a,
const Eigen::ArrayBase< ExponentDerived > &  x 
)

\cpp11

Returns
an expression of the coefficient-wise igamma_der_a(a, x) to the given arrays.

This function computes the coefficient-wise derivative of the incomplete gamma function with respect to the parameter a.

Note
This function supports only float and double scalar types in c++11 mode. To support other scalar types, or float/double in non c++11 mode, the user has to provide implementations of igamma_der_a(T,T) for any scalar type T to be supported.
See also
Eigen::igamma(), Eigen::lgamma()

◆ igammac()

template<typename Derived , typename ExponentDerived >
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_igammac_op< typename Derived::Scalar >, const Derived, const ExponentDerived > Eigen::igammac ( const Eigen::ArrayBase< Derived > &  a,
const Eigen::ArrayBase< ExponentDerived > &  x 
)

\cpp11

Returns
an expression of the coefficient-wise igammac(a, x) to the given arrays.

This function computes the coefficient-wise complementary incomplete gamma function.

Note
This function supports only float and double scalar types in c++11 mode. To support other scalar types, or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar type T to be supported.
See also
Eigen::igamma(), Eigen::lgamma()

◆ imag()

template<typename DerType >
DerType::Scalar Eigen::imag ( const AutoDiffScalar< DerType > &  )
inline

◆ initParallel()

void Eigen::initParallel ( )
inline

Must be call first when calling Eigen from multiple threads

◆ is_same_type()

template<typename T1 , typename T2 >
internal::enable_if< internal::is_same< T1, T2 >::value, bool >::type Eigen::is_same_type ( const T1 &  ,
const T2 &   
)

◆ isMinusInf()

template<typename T >
bool Eigen::isMinusInf ( const T x)

◆ isNotNaN()

template<typename T >
bool Eigen::isNotNaN ( const T x)

◆ isPlusInf()

template<typename T >
bool Eigen::isPlusInf ( const T x)

◆ klu_factor() [1/2]

klu_numeric * Eigen::klu_factor ( int  Ap[],
int  Ai[],
double  Ax[],
klu_symbolic *  Symbolic,
klu_common *  Common,
double   
)
inline

◆ klu_factor() [2/2]

klu_numeric * Eigen::klu_factor ( int  Ap[],
int  Ai[],
std::complex< double >  Ax[],
klu_symbolic *  Symbolic,
klu_common *  Common,
std::complex< double >   
)
inline

◆ klu_solve() [1/2]

int Eigen::klu_solve ( klu_symbolic *  Symbolic,
klu_numeric *  Numeric,
Index  ldim,
Index  nrhs,
double  B[],
klu_common *  Common,
double   
)
inline

A sparse LU factorization and solver based on KLU.

This class allows to solve for A.X = B sparse linear problems via a LU factorization using the KLU library. The sparse matrix A must be squared and full rank. The vectors or matrices X and B can be either dense or sparse.

Warning
The input matrix A should be in a compressed and column-major form. Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
Template Parameters
_MatrixTypethe type of the sparse matrix A, it must be a SparseMatrix<>

\implsparsesolverconcept

See also
Sparse solver concept, class UmfPackLU, class SparseLU

◆ klu_solve() [2/2]

int Eigen::klu_solve ( klu_symbolic *  Symbolic,
klu_numeric *  Numeric,
Index  ldim,
Index  nrhs,
std::complex< double >  B[],
klu_common *  Common,
std::complex< double >   
)
inline

◆ klu_tsolve() [1/2]

int Eigen::klu_tsolve ( klu_symbolic *  Symbolic,
klu_numeric *  Numeric,
Index  ldim,
Index  nrhs,
double  B[],
klu_common *  Common,
double   
)
inline

◆ klu_tsolve() [2/2]

int Eigen::klu_tsolve ( klu_symbolic *  Symbolic,
klu_numeric *  Numeric,
Index  ldim,
Index  nrhs,
std::complex< double >  B[],
klu_common *  Common,
std::complex< double >   
)
inline

◆ kroneckerProduct() [1/2]

template<typename A , typename B >
KroneckerProductSparse< A, B > Eigen::kroneckerProduct ( const EigenBase< A > &  a,
const EigenBase< B > &  b 
)

Computes Kronecker tensor product of two matrices, at least one of which is sparse

Warning
If you want to replace a matrix by its Kronecker product with some matrix, do NOT do this:
A = kroneckerProduct(A,B); // bug!!! caused by aliasing effect
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:180
KroneckerProduct< A, B > kroneckerProduct(const MatrixBase< A > &a, const MatrixBase< B > &b)
Definition KroneckerTensorProduct.h:271
instead, use eval() to work around this:
A = kroneckerProduct(A,B).eval();
Parameters
aDense/sparse matrix a
bDense/sparse matrix b
Returns
Kronecker tensor product of a and b, stored in a sparse matrix

◆ kroneckerProduct() [2/2]

template<typename A , typename B >
KroneckerProduct< A, B > Eigen::kroneckerProduct ( const MatrixBase< A > &  a,
const MatrixBase< B > &  b 
)

Computes Kronecker tensor product of two dense matrices

Warning
If you want to replace a matrix by its Kronecker product with some matrix, do NOT do this:
A = kroneckerProduct(A,B); // bug!!! caused by aliasing effect
instead, use eval() to work around this:
A = kroneckerProduct(A,B).eval();
Parameters
aDense matrix a
bDense matrix b
Returns
Kronecker tensor product of a and b

◆ l1CacheSize()

std::ptrdiff_t Eigen::l1CacheSize ( )
inline
Returns
the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
See also
setCpuCacheSize

◆ l2CacheSize()

std::ptrdiff_t Eigen::l2CacheSize ( )
inline
Returns
the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
See also
setCpuCacheSize

◆ l3CacheSize()

std::ptrdiff_t Eigen::l3CacheSize ( )
inline
Returns
the currently set level 3 cpu cache size (in bytes) used to estimate the ideal blocking size paramete\ rs.
See also
setCpuCacheSize

◆ lazyprod()

template<typename Lhs , typename Rhs >
const Product< Lhs, Rhs, LazyProduct > Eigen::lazyprod ( const Lhs &  lhs,
const Rhs &  rhs 
)

◆ loadMarket()

template<typename SparseMatrixType >
bool Eigen::loadMarket ( SparseMatrixType &  mat,
const std::string &  filename 
)

◆ loadMarketVector()

template<typename VectorType >
bool Eigen::loadMarketVector ( VectorType vec,
const std::string &  filename 
)

◆ MakeAutoDiffScalar()

template<typename NewDerType >
AutoDiffScalar< NewDerType > Eigen::MakeAutoDiffScalar ( const typename NewDerType::Scalar &  value,
const NewDerType &  der 
)
inline

◆ matrix_sqrt_quasi_triangular()

template<typename MatrixType , typename ResultType >
void Eigen::matrix_sqrt_quasi_triangular ( const MatrixType arg,
ResultType &  result 
)

Compute matrix square root of quasi-triangular matrix.

Template Parameters
MatrixTypetype of arg, the argument of matrix square root, expected to be an instantiation of the Matrix class template.
ResultTypetype of result, where result is to be stored.
Parameters
[in]argargument of matrix square root.
[out]resultmatrix square root of upper Hessenberg part of arg.

This function computes the square root of the upper quasi-triangular matrix stored in the upper Hessenberg part of arg. Only the upper Hessenberg part of result is updated, the rest is not touched. See MatrixBase::sqrt() for details on how this computation is implemented.

See also
MatrixSquareRoot, MatrixSquareRootQuasiTriangular

◆ matrix_sqrt_triangular()

template<typename MatrixType , typename ResultType >
void Eigen::matrix_sqrt_triangular ( const MatrixType arg,
ResultType &  result 
)

Compute matrix square root of triangular matrix.

Template Parameters
MatrixTypetype of arg, the argument of matrix square root, expected to be an instantiation of the Matrix class template.
ResultTypetype of result, where result is to be stored.
Parameters
[in]argargument of matrix square root.
[out]resultmatrix square root of upper triangular part of arg.

Only the upper triangular part (including the diagonal) of result is updated, the rest is not touched. See MatrixBase::sqrt() for details on how this computation is implemented.

See also
MatrixSquareRoot, MatrixSquareRootQuasiTriangular

◆ max() [1/3]

template<typename DerType >
CleanedUpDerType< DerType >::type() Eigen::max ( const AutoDiffScalar< DerType > &  x,
const AutoDiffScalar< DerType > &  y 
)
inline

◆ max() [2/3]

template<typename DerType , typename T >
CleanedUpDerType< DerType >::type() Eigen::max ( const AutoDiffScalar< DerType > &  x,
const T y 
)
inline

◆ max() [3/3]

template<typename DerType , typename T >
CleanedUpDerType< DerType >::type() Eigen::max ( const T x,
const AutoDiffScalar< DerType > &  y 
)
inline

◆ min() [1/3]

template<typename DerType >
CleanedUpDerType< DerType >::type() Eigen::min ( const AutoDiffScalar< DerType > &  x,
const AutoDiffScalar< DerType > &  y 
)
inline

◆ min() [2/3]

template<typename DerType , typename T >
CleanedUpDerType< DerType >::type() Eigen::min ( const AutoDiffScalar< DerType > &  x,
const T y 
)
inline

◆ min() [3/3]

template<typename DerType , typename T >
CleanedUpDerType< DerType >::type() Eigen::min ( const T x,
const AutoDiffScalar< DerType > &  y 
)
inline

◆ multiply_assign_using_evaluator()

template<typename DstXprType , typename SrcXprType >
void Eigen::multiply_assign_using_evaluator ( const DstXprType &  dst,
const SrcXprType &  src 
)

◆ nbThreads()

int Eigen::nbThreads ( )
inline
Returns
the max number of threads reserved for Eigen
See also
setNbThreads

◆ operator!=()

template<typename U , typename V >
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool Eigen::operator!= ( const Tuple< U, V > &  x,
const Tuple< U, V > &  y 
)

◆ operator*() [1/9]

template<typename SparseDerived , typename PermutationType >
const Product< Inverse< PermutationType >, SparseDerived, AliasFreeProduct > Eigen::operator* ( const InverseImpl< PermutationType, PermutationStorage > &  tperm,
const SparseMatrixBase< SparseDerived > &  matrix 
)
inline
Returns
the matrix with the inverse permutation applied to the rows.

◆ operator*() [2/9]

template<typename MatrixDerived , typename PermutationDerived >
EIGEN_DEVICE_FUNC const Product< MatrixDerived, PermutationDerived, AliasFreeProduct > Eigen::operator* ( const MatrixBase< MatrixDerived > &  matrix,
const PermutationBase< PermutationDerived > &  permutation 
)
Returns
the matrix with the permutation applied to the columns.

◆ operator*() [3/9]

template<typename MatrixDerived , typename TranspositionsDerived >
EIGEN_DEVICE_FUNC const Product< MatrixDerived, TranspositionsDerived, AliasFreeProduct > Eigen::operator* ( const MatrixBase< MatrixDerived > &  matrix,
const TranspositionsBase< TranspositionsDerived > &  transpositions 
)
Returns
the matrix with the transpositions applied to the columns.

◆ operator*() [4/9]

template<typename OtherDerived , typename VectorsType , typename CoeffsType , int Side>
internal::matrix_type_times_scalar_type< typenameVectorsType::Scalar, OtherDerived >::Type Eigen::operator* ( const MatrixBase< OtherDerived > &  other,
const HouseholderSequence< VectorsType, CoeffsType, Side > &  h 
)

Computes the product of a matrix with a Householder sequence.

Parameters
[in]otherMatrix being multiplied.
[in]hHouseholderSequence being multiplied.
Returns
Expression object representing the product.

This function computes $ MH $ where $ M $ is the matrix other and $ H $ is the Householder sequence represented by h.

◆ operator*() [5/9]

template<typename SparseDerived , typename PermDerived >
const Product< PermDerived, SparseDerived, AliasFreeProduct > Eigen::operator* ( const PermutationBase< PermDerived > &  perm,
const SparseMatrixBase< SparseDerived > &  matrix 
)
inline
Returns
the matrix with the permutation applied to the rows

◆ operator*() [6/9]

template<typename PermutationDerived , typename MatrixDerived >
EIGEN_DEVICE_FUNC const Product< PermutationDerived, MatrixDerived, AliasFreeProduct > Eigen::operator* ( const PermutationBase< PermutationDerived > &  permutation,
const MatrixBase< MatrixDerived > &  matrix 
)
Returns
the matrix with the permutation applied to the rows.

◆ operator*() [7/9]

template<typename SparseDerived , typename PermutationType >
const Product< SparseDerived, Inverse< PermutationType >, AliasFreeProduct > Eigen::operator* ( const SparseMatrixBase< SparseDerived > &  matrix,
const InverseImpl< PermutationType, PermutationStorage > &  tperm 
)
inline
Returns
the matrix with the inverse permutation applied to the columns.

◆ operator*() [8/9]

template<typename SparseDerived , typename PermDerived >
const Product< SparseDerived, PermDerived, AliasFreeProduct > Eigen::operator* ( const SparseMatrixBase< SparseDerived > &  matrix,
const PermutationBase< PermDerived > &  perm 
)
inline
Returns
the matrix with the permutation applied to the columns

◆ operator*() [9/9]

template<typename TranspositionsDerived , typename MatrixDerived >
EIGEN_DEVICE_FUNC const Product< TranspositionsDerived, MatrixDerived, AliasFreeProduct > Eigen::operator* ( const TranspositionsBase< TranspositionsDerived > &  transpositions,
const MatrixBase< MatrixDerived > &  matrix 
)
Returns
the matrix with the transpositions applied to the rows.

◆ operator+() [1/2]

template<typename DenseDerived , typename SparseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > Eigen::operator+ ( const MatrixBase< DenseDerived > &  a,
const SparseMatrixBase< SparseDerived > &  b 
)

◆ operator+() [2/2]

template<typename SparseDerived , typename DenseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > Eigen::operator+ ( const SparseMatrixBase< SparseDerived > &  a,
const MatrixBase< DenseDerived > &  b 
)

◆ operator-() [1/2]

template<typename DenseDerived , typename SparseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > Eigen::operator- ( const MatrixBase< DenseDerived > &  a,
const SparseMatrixBase< SparseDerived > &  b 
)

◆ operator-() [2/2]

template<typename SparseDerived , typename DenseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > Eigen::operator- ( const SparseMatrixBase< SparseDerived > &  a,
const MatrixBase< DenseDerived > &  b 
)

◆ operator<<() [1/2]

template<typename IndexType , int NumDims>
std::ostream & Eigen::operator<< ( std::ostream &  os,
const DSizes< IndexType, NumDims > &  dims 
)

◆ operator<<() [2/2]

template<typename T >
std::ostream & Eigen::operator<< ( std::ostream &  os,
const TensorBase< T, ReadOnlyAccessors > &  expr 
)

◆ operator==() [1/2]

template<class T , std::size_t N>
EIGEN_DEVICE_FUNC bool Eigen::operator== ( const array< T, N > &  lhs,
const array< T, N > &  rhs 
)

◆ operator==() [2/2]

template<typename U , typename V >
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool Eigen::operator== ( const Tuple< U, V > &  x,
const Tuple< U, V > &  y 
)

◆ poly_eval()

template<typename Polynomials , typename T >
T Eigen::poly_eval ( const Polynomials &  poly,
const T x 
)
inline
Returns
the evaluation of the polynomial at x using stabilized Horner algorithm.
Parameters
[in]poly: the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. $ 1 + 3x^2 $ is stored as a vector $ [ 1, 0, 3 ] $.
[in]x: the value to evaluate the polynomial at.

◆ poly_eval_horner()

template<typename Polynomials , typename T >
T Eigen::poly_eval_horner ( const Polynomials &  poly,
const T x 
)
inline
Returns
the evaluation of the polynomial at x using Horner algorithm.
Parameters
[in]poly: the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. $ 1 + 3x^2 $ is stored as a vector $ [ 1, 0, 3 ] $.
[in]x: the value to evaluate the polynomial at.
Note
for stability: $ |x| \le 1 $

◆ polygamma()

template<typename DerivedN , typename DerivedX >
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_polygamma_op< typename DerivedX::Scalar >, const DerivedN, const DerivedX > Eigen::polygamma ( const Eigen::ArrayBase< DerivedN > &  n,
const Eigen::ArrayBase< DerivedX > &  x 
)

\cpp11

Returns
an expression of the coefficient-wise polygamma(n, x) to the given arrays.

It returns the n -th derivative of the digamma(psi) evaluated at x.

Note
This function supports only float and double scalar types in c++11 mode. To support other scalar types, or float/double in non c++11 mode, the user has to provide implementations of polygamma(T,T) for any scalar type T to be supported.
See also
Eigen::digamma()

◆ prod()

template<typename Lhs , typename Rhs >
const Product< Lhs, Rhs > Eigen::prod ( const Lhs &  lhs,
const Rhs &  rhs 
)

◆ randomPermutationVector()

template<typename PermutationVectorType >
void Eigen::randomPermutationVector ( PermutationVectorType &  v,
Index  size 
)

◆ real()

template<typename DerType >
const AutoDiffScalar< DerType > & Eigen::real ( const AutoDiffScalar< DerType > &  x)
inline

◆ roots_to_monicPolynomial()

template<typename RootVector , typename Polynomial >
void Eigen::roots_to_monicPolynomial ( const RootVector &  rv,
Polynomial &  poly 
)

Given the roots of a polynomial compute the coefficients in the monomial basis of the monic polynomial with same roots and minimal degree. If RootVector is a vector of complexes, Polynomial should also be a vector of complexes.

Parameters
[in]rv: a vector containing the roots of a polynomial.
[out]poly: the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. $ 3 + x^2 $ is stored as a vector $ [ 3, 0, 1 ] $.

◆ saveMarket()

template<typename SparseMatrixType >
bool Eigen::saveMarket ( const SparseMatrixType &  mat,
const std::string &  filename,
int  sym = 0 
)

◆ saveMarketVector()

template<typename VectorType >
bool Eigen::saveMarketVector ( const VectorType vec,
const std::string &  filename 
)

◆ Scaling() [1/6]

template<typename Derived >
const DiagonalWrapper< const Derived > Eigen::Scaling ( const MatrixBase< Derived > &  coeffs)
inline

Constructs an axis aligned scaling expression from vector expression coeffs This is an alias for coeffs.asDiagonal()

◆ Scaling() [2/6]

template<typename Scalar >
DiagonalMatrix< Scalar, 2 > Eigen::Scaling ( const Scalar sx,
const Scalar sy 
)
inline

Constructs a 2D axis aligned scaling

◆ Scaling() [3/6]

template<typename Scalar >
DiagonalMatrix< Scalar, 3 > Eigen::Scaling ( const Scalar sx,
const Scalar sy,
const Scalar sz 
)
inline

Constructs a 3D axis aligned scaling

◆ Scaling() [4/6]

template<typename RealScalar >
UniformScaling< std::complex< RealScalar > > Eigen::Scaling ( const std::complex< RealScalar > &  s)
inline

Constructs a uniform scaling from scale factor s

◆ Scaling() [5/6]

UniformScaling< double > Eigen::Scaling ( double  s)
inline

Constructs a uniform scaling from scale factor s

◆ Scaling() [6/6]

UniformScaling< float > Eigen::Scaling ( float  s)
inline

Constructs a uniform scaling from scale factor s

◆ seq() [1/8]

template<typename FirstTypeDerived , typename LastTypeDerived >
ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > Eigen::seq ( const symbolic::BaseExpr< FirstTypeDerived > &  f,
const symbolic::BaseExpr< LastTypeDerived > &  l 
)

◆ seq() [2/8]

template<typename FirstTypeDerived , typename LastTypeDerived , typename IncrType >
ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, typename internal::cleanup_seq_incr< IncrType >::type > Eigen::seq ( const symbolic::BaseExpr< FirstTypeDerived > &  f,
const symbolic::BaseExpr< LastTypeDerived > &  l,
IncrType  incr 
)

◆ seq() [3/8]

template<typename FirstTypeDerived , typename LastType >
internal::enable_if<!symbolic::is_symbolic< LastType >::value, ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< symbolic::NegateExpr< FirstTypeDerived >, symbolic::ValueExpr<> >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > >::type Eigen::seq ( const symbolic::BaseExpr< FirstTypeDerived > &  f,
LastType  l 
)

◆ seq() [4/8]

template<typename FirstTypeDerived , typename LastType , typename IncrType >
internal::enable_if<!symbolic::is_symbolic< LastType >::value, ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< symbolic::NegateExpr< FirstTypeDerived >, symbolic::ValueExpr<> >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type Eigen::seq ( const symbolic::BaseExpr< FirstTypeDerived > &  f,
LastType  l,
IncrType  incr 
)

◆ seq() [5/8]

template<typename FirstType , typename LastTypeDerived >
internal::enable_if<!symbolic::is_symbolic< FirstType >::value, ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::ValueExpr<> >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > >::type Eigen::seq ( FirstType  f,
const symbolic::BaseExpr< LastTypeDerived > &  l 
)

◆ seq() [6/8]

template<typename FirstType , typename LastTypeDerived , typename IncrType >
internal::enable_if<!symbolic::is_symbolic< FirstType >::value, ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::ValueExpr<> >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type Eigen::seq ( FirstType  f,
const symbolic::BaseExpr< LastTypeDerived > &  l,
IncrType  incr 
)

◆ seq() [7/8]

template<typename FirstType , typename LastType >
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, Index > >::type Eigen::seq ( FirstType  f,
LastType  l 
)

◆ seq() [8/8]

template<typename FirstType , typename LastType , typename IncrType >
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, Index, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type Eigen::seq ( FirstType  f,
LastType  l,
IncrType  incr 
)

◆ seqN() [1/2]

template<typename FirstType , typename SizeType >
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type > Eigen::seqN ( FirstType  first,
SizeType  size 
)
Returns
an ArithmeticSequence starting at first, of length size, and unit increment
See also
seqN(FirstType,SizeType,IncrType), seq(FirstType,LastType)

◆ seqN() [2/2]

template<typename FirstType , typename SizeType , typename IncrType >
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type, typename internal::cleanup_seq_incr< IncrType >::type > Eigen::seqN ( FirstType  first,
SizeType  size,
IncrType  incr 
)
Returns
an ArithmeticSequence starting at first, of length size, and increment incr
See also
seqN(FirstType,SizeType), seq(FirstType,LastType,IncrType)

◆ setCpuCacheSizes()

void Eigen::setCpuCacheSizes ( std::ptrdiff_t  l1,
std::ptrdiff_t  l2,
std::ptrdiff_t  l3 
)
inline

Set the cpu L1 and L2 cache sizes (in bytes). These values are use to adjust the size of the blocks for the algorithms working per blocks.

See also
computeProductBlockingSizes

◆ setNbThreads()

void Eigen::setNbThreads ( int  v)
inline

Sets the max number of threads reserved for Eigen

See also
nbThreads

◆ ssaupd_()

void Eigen::ssaupd_ ( int ido,
char *  bmat,
int n,
char *  which,
int nev,
float *  tol,
float *  resid,
int ncv,
float *  v,
int ldv,
int iparam,
int ipntr,
float *  workd,
float *  workl,
int lworkl,
int info 
)

◆ sseupd_()

void Eigen::sseupd_ ( int rvec,
char *  All,
int select,
float *  d,
float *  z,
int ldz,
float *  sigma,
char *  bmat,
int n,
char *  which,
int nev,
float *  tol,
float *  resid,
int ncv,
float *  v,
int ldv,
int iparam,
int ipntr,
float *  workd,
float *  workl,
int lworkl,
int ierr 
)

◆ subtract_assign_using_evaluator()

template<typename DstXprType , typename SrcXprType >
void Eigen::subtract_assign_using_evaluator ( const DstXprType &  dst,
const SrcXprType &  src 
)

◆ swap_using_evaluator()

template<typename DstXprType , typename SrcXprType >
void Eigen::swap_using_evaluator ( const DstXprType &  dst,
const SrcXprType &  src 
)

◆ test_is_equal()

template<typename T , typename U >
bool Eigen::test_is_equal ( const T actual,
const U &  expected,
bool  expect_equal = true 
)

◆ test_isApprox() [1/5]

bool Eigen::test_isApprox ( const long double &  a,
const long double &  b 
)
inline

◆ test_isApprox() [2/5]

bool Eigen::test_isApprox ( const std::complex< double > &  a,
const std::complex< double > &  b 
)
inline

◆ test_isApprox() [3/5]

bool Eigen::test_isApprox ( const std::complex< float > &  a,
const std::complex< float > &  b 
)
inline

◆ test_isApprox() [4/5]

bool Eigen::test_isApprox ( const std::complex< long double > &  a,
const std::complex< long double > &  b 
)
inline

◆ test_isApprox() [5/5]

template<typename Type1 , typename Type2 >
bool Eigen::test_isApprox ( const Type1 &  a,
const Type2 &  b,
typename Type1::Scalar *  = 0 
)
inline

◆ test_isApproxOrLessThan()

bool Eigen::test_isApproxOrLessThan ( const long double &  a,
const long double &  b 
)
inline

◆ test_isApproxWithRef()

template<typename Scalar , typename ScalarRef >
bool Eigen::test_isApproxWithRef ( const Scalar a,
const Scalar b,
const ScalarRef &  ref 
)
inline

◆ test_isMuchSmallerThan() [1/6]

bool Eigen::test_isMuchSmallerThan ( const long double &  a,
const long double &  b 
)
inline

◆ test_isMuchSmallerThan() [2/6]

template<typename Derived >
bool Eigen::test_isMuchSmallerThan ( const MatrixBase< Derived > &  m,
const typename NumTraits< typename internal::traits< Derived >::Scalar >::Real s 
)
inline

◆ test_isMuchSmallerThan() [3/6]

template<typename Derived1 , typename Derived2 >
bool Eigen::test_isMuchSmallerThan ( const MatrixBase< Derived1 > &  m1,
const MatrixBase< Derived2 > &  m2 
)
inline

◆ test_isMuchSmallerThan() [4/6]

bool Eigen::test_isMuchSmallerThan ( const std::complex< double > &  a,
const std::complex< double > &  b 
)
inline

◆ test_isMuchSmallerThan() [5/6]

bool Eigen::test_isMuchSmallerThan ( const std::complex< float > &  a,
const std::complex< float > &  b 
)
inline

◆ test_isMuchSmallerThan() [6/6]

bool Eigen::test_isMuchSmallerThan ( const std::complex< long double > &  a,
const std::complex< long double > &  b 
)
inline

◆ test_isUnitary()

template<typename Derived >
bool Eigen::test_isUnitary ( const MatrixBase< Derived > &  m)
inline

◆ test_precision()

template<typename T >
NumTraits< T >::Real Eigen::test_precision ( )
inline

◆ test_precision< AnnoyingScalar >()

◆ test_precision< double >()

template<>
double Eigen::test_precision< double > ( )
inline

◆ test_precision< float >()

template<>
float Eigen::test_precision< float > ( )
inline

◆ test_precision< long double >()

template<>
long double Eigen::test_precision< long double > ( )
inline

◆ test_precision< Real >()

template<>
Real Eigen::test_precision< Real > ( )

◆ test_precision< std::complex< double > >()

template<>
double Eigen::test_precision< std::complex< double > > ( )
inline

◆ test_precision< std::complex< float > >()

template<>
float Eigen::test_precision< std::complex< float > > ( )
inline

◆ test_precision< std::complex< long double > >()

template<>
long double Eigen::test_precision< std::complex< long double > > ( )
inline

◆ test_relative_error() [1/13]

template<typename S , int D>
S Eigen::test_relative_error ( const AlignedBox< S, D > &  a,
const AlignedBox< S, D > &  b 
)

◆ test_relative_error() [2/13]

template<typename T , typename Derived >
T Eigen::test_relative_error ( const AlignedVector3< T > &  a,
const MatrixBase< Derived > &  b 
)

◆ test_relative_error() [3/13]

template<typename T >
T Eigen::test_relative_error ( const AngleAxis< T > &  a,
const AngleAxis< T > &  b 
)

◆ test_relative_error() [4/13]

template<typename T1 , typename T2 >
NumTraits< typenameT1::RealScalar >::NonInteger Eigen::test_relative_error ( const EigenBase< T1 > &  a,
const EigenBase< T2 > &  b 
)

◆ test_relative_error() [5/13]

template<typename T1 , typename T2 >
T1::RealScalar Eigen::test_relative_error ( const MatrixBase< T1 > &  a,
const SparseMatrixBase< T2 > &  b 
)

◆ test_relative_error() [6/13]

template<typename S , int D, int O>
S Eigen::test_relative_error ( const ParametrizedLine< S, D, O > &  a,
const ParametrizedLine< S, D, O > &  b 
)

◆ test_relative_error() [7/13]

template<typename T >
T Eigen::test_relative_error ( const Rotation2D< T > &  a,
const Rotation2D< T > &  b 
)

◆ test_relative_error() [8/13]

template<typename T1 , typename T2 >
T1::RealScalar Eigen::test_relative_error ( const SparseMatrixBase< T1 > &  a,
const MatrixBase< T2 > &  b 
)

◆ test_relative_error() [9/13]

template<typename T1 , typename T2 >
T1::RealScalar Eigen::test_relative_error ( const SparseMatrixBase< T1 > &  a,
const SparseMatrixBase< T2 > &  b 
)

◆ test_relative_error() [10/13]

template<typename T1 , typename T2 >
T1::RealScalar Eigen::test_relative_error ( const T1 &  a,
const T2 &  b,
const typename T1::Coefficients *  = 0 
)

◆ test_relative_error() [11/13]

template<typename T1 , typename T2 >
T1::Scalar Eigen::test_relative_error ( const T1 &  a,
const T2 &  b,
const typename T1::MatrixType *  = 0 
)

◆ test_relative_error() [12/13]

template<typename T1 , typename T2 >
NumTraits< typenameNumTraits< T1 >::Real >::NonInteger Eigen::test_relative_error ( const T1 &  a,
const T2 &  b,
typename internal::enable_if< internal::is_arithmetic< typename NumTraits< T1 >::Real >::value, T1 >::type *  = 0 
)

◆ test_relative_error() [13/13]

template<typename S , int D>
S Eigen::test_relative_error ( const Translation< S, D > &  a,
const Translation< S, D > &  b 
)

◆ umfpack_defaults() [1/4]

void Eigen::umfpack_defaults ( double  control[UMFPACK_CONTROL],
double  ,
int   
)
inline

◆ umfpack_defaults() [2/4]

void Eigen::umfpack_defaults ( double  control[UMFPACK_CONTROL],
double  ,
SuiteSparse_long   
)
inline

◆ umfpack_defaults() [3/4]

void Eigen::umfpack_defaults ( double  control[UMFPACK_CONTROL],
std::complex< double >  ,
int   
)
inline

◆ umfpack_defaults() [4/4]

void Eigen::umfpack_defaults ( double  control[UMFPACK_CONTROL],
std::complex< double >  ,
SuiteSparse_long   
)
inline

◆ umfpack_free_numeric() [1/4]

void Eigen::umfpack_free_numeric ( void **  Numeric,
double  ,
int   
)
inline

◆ umfpack_free_numeric() [2/4]

void Eigen::umfpack_free_numeric ( void **  Numeric,
double  ,
SuiteSparse_long   
)
inline

◆ umfpack_free_numeric() [3/4]

void Eigen::umfpack_free_numeric ( void **  Numeric,
std::complex< double >  ,
int   
)
inline

◆ umfpack_free_numeric() [4/4]

void Eigen::umfpack_free_numeric ( void **  Numeric,
std::complex< double >  ,
SuiteSparse_long   
)
inline

◆ umfpack_free_symbolic() [1/4]

void Eigen::umfpack_free_symbolic ( void **  Symbolic,
double  ,
int   
)
inline

◆ umfpack_free_symbolic() [2/4]

void Eigen::umfpack_free_symbolic ( void **  Symbolic,
double  ,
SuiteSparse_long   
)
inline

◆ umfpack_free_symbolic() [3/4]

void Eigen::umfpack_free_symbolic ( void **  Symbolic,
std::complex< double >  ,
int   
)
inline

◆ umfpack_free_symbolic() [4/4]

void Eigen::umfpack_free_symbolic ( void **  Symbolic,
std::complex< double >  ,
SuiteSparse_long   
)
inline

◆ umfpack_get_determinant() [1/4]

int Eigen::umfpack_get_determinant ( double *  Mx,
double *  Ex,
void *  NumericHandle,
double  User_Info[UMFPACK_INFO],
int   
)
inline

◆ umfpack_get_determinant() [2/4]

SuiteSparse_long Eigen::umfpack_get_determinant ( double *  Mx,
double *  Ex,
void *  NumericHandle,
double  User_Info[UMFPACK_INFO],
SuiteSparse_long   
)
inline

◆ umfpack_get_determinant() [3/4]

int Eigen::umfpack_get_determinant ( std::complex< double > *  Mx,
double *  Ex,
void *  NumericHandle,
double  User_Info[UMFPACK_INFO],
int   
)
inline

◆ umfpack_get_determinant() [4/4]

SuiteSparse_long Eigen::umfpack_get_determinant ( std::complex< double > *  Mx,
double *  Ex,
void *  NumericHandle,
double  User_Info[UMFPACK_INFO],
SuiteSparse_long   
)
inline

◆ umfpack_get_lunz() [1/4]

int Eigen::umfpack_get_lunz ( int lnz,
int unz,
int n_row,
int n_col,
int nz_udiag,
void *  Numeric,
double   
)
inline

◆ umfpack_get_lunz() [2/4]

int Eigen::umfpack_get_lunz ( int lnz,
int unz,
int n_row,
int n_col,
int nz_udiag,
void *  Numeric,
std::complex< double >   
)
inline

◆ umfpack_get_lunz() [3/4]

SuiteSparse_long Eigen::umfpack_get_lunz ( SuiteSparse_long *  lnz,
SuiteSparse_long *  unz,
SuiteSparse_long *  n_row,
SuiteSparse_long *  n_col,
SuiteSparse_long *  nz_udiag,
void *  Numeric,
double   
)
inline

◆ umfpack_get_lunz() [4/4]

SuiteSparse_long Eigen::umfpack_get_lunz ( SuiteSparse_long *  lnz,
SuiteSparse_long *  unz,
SuiteSparse_long *  n_row,
SuiteSparse_long *  n_col,
SuiteSparse_long *  nz_udiag,
void *  Numeric,
std::complex< double >   
)
inline

◆ umfpack_get_numeric() [1/4]

int Eigen::umfpack_get_numeric ( int  Lp[],
int  Lj[],
double  Lx[],
int  Up[],
int  Ui[],
double  Ux[],
int  P[],
int  Q[],
double  Dx[],
int do_recip,
double  Rs[],
void *  Numeric 
)
inline

◆ umfpack_get_numeric() [2/4]

int Eigen::umfpack_get_numeric ( int  Lp[],
int  Lj[],
std::complex< double >  Lx[],
int  Up[],
int  Ui[],
std::complex< double >  Ux[],
int  P[],
int  Q[],
std::complex< double >  Dx[],
int do_recip,
double  Rs[],
void *  Numeric 
)
inline

◆ umfpack_get_numeric() [3/4]

SuiteSparse_long Eigen::umfpack_get_numeric ( SuiteSparse_long  Lp[],
SuiteSparse_long  Lj[],
double  Lx[],
SuiteSparse_long  Up[],
SuiteSparse_long  Ui[],
double  Ux[],
SuiteSparse_long  P[],
SuiteSparse_long  Q[],
double  Dx[],
SuiteSparse_long *  do_recip,
double  Rs[],
void *  Numeric 
)
inline

◆ umfpack_get_numeric() [4/4]

SuiteSparse_long Eigen::umfpack_get_numeric ( SuiteSparse_long  Lp[],
SuiteSparse_long  Lj[],
std::complex< double >  Lx[],
SuiteSparse_long  Up[],
SuiteSparse_long  Ui[],
std::complex< double >  Ux[],
SuiteSparse_long  P[],
SuiteSparse_long  Q[],
std::complex< double >  Dx[],
SuiteSparse_long *  do_recip,
double  Rs[],
void *  Numeric 
)
inline

◆ umfpack_numeric() [1/4]

int Eigen::umfpack_numeric ( const int  Ap[],
const int  Ai[],
const double  Ax[],
void *  Symbolic,
void **  Numeric,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
)
inline

◆ umfpack_numeric() [2/4]

int Eigen::umfpack_numeric ( const int  Ap[],
const int  Ai[],
const std::complex< double >  Ax[],
void *  Symbolic,
void **  Numeric,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
)
inline

◆ umfpack_numeric() [3/4]

SuiteSparse_long Eigen::umfpack_numeric ( const SuiteSparse_long  Ap[],
const SuiteSparse_long  Ai[],
const double  Ax[],
void *  Symbolic,
void **  Numeric,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
)
inline

◆ umfpack_numeric() [4/4]

SuiteSparse_long Eigen::umfpack_numeric ( const SuiteSparse_long  Ap[],
const SuiteSparse_long  Ai[],
const std::complex< double >  Ax[],
void *  Symbolic,
void **  Numeric,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
)
inline

◆ umfpack_report_control() [1/4]

void Eigen::umfpack_report_control ( double  control[UMFPACK_CONTROL],
double  ,
int   
)
inline

◆ umfpack_report_control() [2/4]

void Eigen::umfpack_report_control ( double  control[UMFPACK_CONTROL],
double  ,
SuiteSparse_long   
)
inline

◆ umfpack_report_control() [3/4]

void Eigen::umfpack_report_control ( double  control[UMFPACK_CONTROL],
std::complex< double >  ,
int   
)
inline

◆ umfpack_report_control() [4/4]

void Eigen::umfpack_report_control ( double  control[UMFPACK_CONTROL],
std::complex< double >  ,
SuiteSparse_long   
)
inline

◆ umfpack_report_info() [1/4]

void Eigen::umfpack_report_info ( double  control[UMFPACK_CONTROL],
double  info[UMFPACK_INFO],
double  ,
int   
)
inline

◆ umfpack_report_info() [2/4]

void Eigen::umfpack_report_info ( double  control[UMFPACK_CONTROL],
double  info[UMFPACK_INFO],
double  ,
SuiteSparse_long   
)
inline

◆ umfpack_report_info() [3/4]

void Eigen::umfpack_report_info ( double  control[UMFPACK_CONTROL],
double  info[UMFPACK_INFO],
std::complex< double >  ,
int   
)
inline

◆ umfpack_report_info() [4/4]

void Eigen::umfpack_report_info ( double  control[UMFPACK_CONTROL],
double  info[UMFPACK_INFO],
std::complex< double >  ,
SuiteSparse_long   
)
inline

◆ umfpack_report_status() [1/4]

void Eigen::umfpack_report_status ( double  control[UMFPACK_CONTROL],
int  status,
double  ,
int   
)
inline

◆ umfpack_report_status() [2/4]

void Eigen::umfpack_report_status ( double  control[UMFPACK_CONTROL],
int  status,
double  ,
SuiteSparse_long   
)
inline

◆ umfpack_report_status() [3/4]

void Eigen::umfpack_report_status ( double  control[UMFPACK_CONTROL],
int  status,
std::complex< double >  ,
int   
)
inline

◆ umfpack_report_status() [4/4]

void Eigen::umfpack_report_status ( double  control[UMFPACK_CONTROL],
int  status,
std::complex< double >  ,
SuiteSparse_long   
)
inline

◆ umfpack_solve() [1/4]

int Eigen::umfpack_solve ( int  sys,
const int  Ap[],
const int  Ai[],
const double  Ax[],
double  X[],
const double  B[],
void *  Numeric,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
)
inline

◆ umfpack_solve() [2/4]

int Eigen::umfpack_solve ( int  sys,
const int  Ap[],
const int  Ai[],
const std::complex< double >  Ax[],
std::complex< double >  X[],
const std::complex< double >  B[],
void *  Numeric,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
)
inline

◆ umfpack_solve() [3/4]

SuiteSparse_long Eigen::umfpack_solve ( int  sys,
const SuiteSparse_long  Ap[],
const SuiteSparse_long  Ai[],
const double  Ax[],
double  X[],
const double  B[],
void *  Numeric,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
)
inline

◆ umfpack_solve() [4/4]

SuiteSparse_long Eigen::umfpack_solve ( int  sys,
const SuiteSparse_long  Ap[],
const SuiteSparse_long  Ai[],
const std::complex< double >  Ax[],
std::complex< double >  X[],
const std::complex< double >  B[],
void *  Numeric,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
)
inline

◆ umfpack_symbolic() [1/4]

int Eigen::umfpack_symbolic ( int  n_row,
int  n_col,
const int  Ap[],
const int  Ai[],
const double  Ax[],
void **  Symbolic,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
)
inline

◆ umfpack_symbolic() [2/4]

int Eigen::umfpack_symbolic ( int  n_row,
int  n_col,
const int  Ap[],
const int  Ai[],
const std::complex< double >  Ax[],
void **  Symbolic,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
)
inline

◆ umfpack_symbolic() [3/4]

SuiteSparse_long Eigen::umfpack_symbolic ( SuiteSparse_long  n_row,
SuiteSparse_long  n_col,
const SuiteSparse_long  Ap[],
const SuiteSparse_long  Ai[],
const double  Ax[],
void **  Symbolic,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
)
inline

◆ umfpack_symbolic() [4/4]

SuiteSparse_long Eigen::umfpack_symbolic ( SuiteSparse_long  n_row,
SuiteSparse_long  n_col,
const SuiteSparse_long  Ap[],
const SuiteSparse_long  Ai[],
const std::complex< double >  Ax[],
void **  Symbolic,
const double  Control[UMFPACK_CONTROL],
double  Info[UMFPACK_INFO] 
)
inline

◆ verifyIsApprox()

template<typename Type1 , typename Type2 >
bool Eigen::verifyIsApprox ( const Type1 &  a,
const Type2 &  b 
)
inline

◆ viewAsCholmod() [1/5]

template<typename _Scalar , int _Options, typename _Index >
const cholmod_sparse Eigen::viewAsCholmod ( const SparseMatrix< _Scalar, _Options, _Index > &  mat)

◆ viewAsCholmod() [2/5]

template<typename _Scalar , int _Options, typename _Index , unsigned int UpLo>
cholmod_sparse Eigen::viewAsCholmod ( const SparseSelfAdjointView< const SparseMatrix< _Scalar, _Options, _Index >, UpLo > &  mat)

Returns a view of the Eigen sparse matrix mat as Cholmod sparse matrix. The data are not copied but shared.

◆ viewAsCholmod() [3/5]

template<typename _Scalar , int _Options, typename _Index >
const cholmod_sparse Eigen::viewAsCholmod ( const SparseVector< _Scalar, _Options, _Index > &  mat)

◆ viewAsCholmod() [4/5]

template<typename Derived >
cholmod_dense Eigen::viewAsCholmod ( MatrixBase< Derived > &  mat)

Returns a view of the Eigen dense matrix mat as Cholmod dense matrix. The data are not copied but shared.

◆ viewAsCholmod() [5/5]

template<typename _Scalar , int _Options, typename _StorageIndex >
cholmod_sparse Eigen::viewAsCholmod ( Ref< SparseMatrix< _Scalar, _Options, _StorageIndex > >  mat)

Wraps the Eigen sparse matrix mat into a Cholmod sparse matrix object. Note that the data are shared.

◆ viewAsEigen()

template<typename Scalar , int Flags, typename StorageIndex >
MappedSparseMatrix< Scalar, Flags, StorageIndex > Eigen::viewAsEigen ( cholmod_sparse &  cm)

Returns a view of the Cholmod sparse matrix cm as an Eigen sparse matrix. The data are not copied but shared.

◆ zeta()

template<typename DerivedX , typename DerivedQ >
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_zeta_op< typename DerivedX::Scalar >, const DerivedX, const DerivedQ > Eigen::zeta ( const Eigen::ArrayBase< DerivedX > &  x,
const Eigen::ArrayBase< DerivedQ > &  q 
)
Returns
an expression of the coefficient-wise zeta(x, q) to the given arrays.

It returns the Riemann zeta function of two arguments x and q:

Parameters
xis the exponent, it must be > 1
qis the shift, it must be > 0
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of zeta(T,T) for any scalar type T to be supported.
See also
ArrayBase::zeta()

Variable Documentation

◆ ActualPacketAccessBit

const unsigned int Eigen::ActualPacketAccessBit = 0x0

◆ AutoOrder

const int Eigen::AutoOrder = 2

◆ CoherentAccessPattern

const int Eigen::CoherentAccessPattern = 0x1

◆ Dynamic

const int Eigen::Dynamic = -1

This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.

Changing the value of Dynamic breaks the ABI, as Dynamic is often used as a template parameter for Matrix.

◆ DynamicIndex

const int Eigen::DynamicIndex = 0xffffff

This value means that a signed quantity (e.g., a signed index) is not known at compile-time, and that instead its value has to be specified at runtime.

◆ exponents

EIGEN_DEVICE_FUNC const Eigen::ArrayBase<Derived>& Eigen::exponents
Initial value:
{
typedef typename internal::promote_scalar_arg<typename Derived::Scalar,Scalar,
EIGEN_SCALAR_BINARY_SUPPORTED(pow,Scalar,typename Derived::Scalar)>::type PromotedScalar
#define EIGEN_SCALAR_BINARY_SUPPORTED(OPNAME, TYPEA, TYPEB)
Definition Macros.h:1344

◆ expx

Scalar Eigen::expx = exp(x.value())

◆ HereditaryBits

const unsigned int Eigen::HereditaryBits
Initial value:
const unsigned int EvalBeforeNestingBit
Definition Constants.h:70
const unsigned int RowMajorBit
Definition Constants.h:66

◆ HugeCost

const int Eigen::HugeCost = 10000

This value means that the cost to evaluate an expression coefficient is either very expensive or cannot be known at compile time.

This value has to be positive to (1) simplify cost computation, and (2) allow to distinguish between a very expensive and very very expensive expressions. It thus must also be large enough to make sure unrolling won't happen and that sub expressions will be evaluated, but not too large to avoid overflow.

◆ Infinity

const int Eigen::Infinity = -1

This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm<int>(). The value Infinity there means the L-infinity norm.

◆ InnerRandomAccessPattern

const int Eigen::InnerRandomAccessPattern = 0x2 | CoherentAccessPattern

◆ NestByRefBit

const unsigned int Eigen::NestByRefBit = 0x100

◆ OuterRandomAccessPattern

const int Eigen::OuterRandomAccessPattern = 0x4 | CoherentAccessPattern

◆ RandomAccessPattern

const int Eigen::RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern

◆ SkylineBit

const unsigned int Eigen::SkylineBit = 0x1200

◆ UndefinedIncr

const int Eigen::UndefinedIncr = 0xfffffe

This value means that the increment to go from one value to another in a sequence is not constant for each step.