11#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
12#define EIGEN_INCOMPLETE_CHOlESKY_H
44template <
typename Scalar,
int _UpLo = Lower,
typename _OrderingType = AMDOrdering<
int> >
59 typedef std::vector<std::list<StorageIndex> >
VectorList;
77 template<
typename MatrixType>
110 template<
typename MatrixType>
115 ord(
mat.template selfadjointView<UpLo>(), pinv);
116 if(pinv.size()>0)
m_perm = pinv.inverse();
131 template<
typename MatrixType>
140 template<
typename MatrixType>
148 template<
typename Rhs,
typename Dest>
156 x =
m_L.
adjoint().template triangularView<Upper>().solve(
x);
188template<
typename Scalar,
int _UpLo,
typename OrderingType>
189template<
typename _MatrixType>
193 eigen_assert(m_analysisIsOk &&
"analyzePattern() should be called first");
198 if (m_perm.rows() ==
mat.rows() )
202 tmp =
mat.template selfadjointView<_UpLo>().
twistedBy(m_perm);
203 m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
207 m_L.template selfadjointView<Lower>() =
mat.template selfadjointView<_UpLo>();
211 Index nnz = m_L.nonZeros();
220 col_pattern.fill(-1);
228 for (
Index k = colPtr[
j]; k < colPtr[
j+1]; k++)
235 m_scale = m_scale.cwiseSqrt().cwiseSqrt();
238 if(m_scale(
j)>(std::numeric_limits<RealScalar>::min)())
249 for (
Index k = colPtr[
j]; k < colPtr[
j+1]; k++)
250 vals[k] *= (m_scale(
j)*m_scale(rowIdx[k]));
251 eigen_internal_assert(rowIdx[colPtr[
j]]==
j &&
"IncompleteCholesky: only the lower triangular part must be stored");
252 mindiag =
numext::mini(numext::real(vals[colPtr[
j]]), mindiag);
259 shift = m_initialShift - mindiag;
269 vals[colPtr[
j]] += shift;
279 for (
Index i = colPtr[
j] + 1;
i < colPtr[
j+1];
i++)
282 col_vals(col_nnz) = vals[
i];
283 col_irow(col_nnz) = l;
284 col_pattern(l) = col_nnz;
288 typename std::list<StorageIndex>::iterator k;
290 for(k = listCol[
j].begin(); k != listCol[
j].end(); k++)
292 Index jk = firstElt(*k);
294 Scalar v_j_jk = numext::conj(vals[jk]);
297 for (
Index i = jk;
i < colPtr[*k+1];
i++)
302 col_vals(col_nnz) = vals[
i] * v_j_jk;
303 col_irow[col_nnz] = l;
304 col_pattern(l) = col_nnz;
308 col_vals(col_pattern[l]) -= vals[
i] * v_j_jk;
310 updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
315 if(numext::real(diag) <= 0)
326 col_pattern.fill(-1);
334 vals[colPtr[
j]] = rdiag;
335 for (
Index k = 0; k<col_nnz; ++k)
339 col_vals(k) /= rdiag;
345 Index p = colPtr[
j+1] - colPtr[
j] - 1 ;
351 for (
Index i = colPtr[
j]+1;
i < colPtr[
j+1];
i++)
353 vals[
i] = col_vals(cpt);
354 rowIdx[
i] = col_irow(cpt);
356 col_pattern(col_irow(cpt)) = -1;
361 updateList(colPtr,rowIdx,vals,
j,jk,firstElt,listCol);
366 m_factorizationIsOk =
true;
372template<
typename Scalar,
int _UpLo,
typename OrderingType>
375 if (jk < colPtr(
col+1) )
379 rowIdx.segment(jk,
p).minCoeff(&minpos);
381 if (rowIdx(minpos) != rowIdx(jk))
384 std::swap(rowIdx(jk),rowIdx(minpos));
385 std::swap(vals(jk),vals(minpos));
387 firstElt(
col) = internal::convert_index<StorageIndex,Index>(jk);
388 listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(
col));
int n
Definition BiCGSTAB_simple.cpp:1
int i
Definition BiCGSTAB_step_by_step.cpp:9
Array< double, 1, 3 > e(1./3., 0.5, 2.)
#define eigen_internal_assert(x)
Definition Macros.h:1043
#define EIGEN_NOEXCEPT
Definition Macros.h:1418
#define EIGEN_CONSTEXPR
Definition Macros.h:787
#define eigen_assert(x)
Definition Macros.h:1037
MatrixXf mat
Definition Tutorial_AdvancedInitialization_CommaTemporary.cpp:1
float * p
Definition Tutorial_Map_using.cpp:9
Scalar * b
Definition benchVecAdd.cpp:17
SCALAR Scalar
Definition bench_gemm.cpp:46
NumTraits< Scalar >::Real RealScalar
Definition bench_gemm.cpp:47
MatrixXf MatrixType
Definition benchmark-blocking-sizes.cpp:52
Modified Incomplete Cholesky with dual threshold.
Definition IncompleteCholesky.h:46
PermutationType::StorageIndex StorageIndex
Definition IncompleteCholesky.h:54
Matrix< StorageIndex, Dynamic, 1 > VectorIx
Definition IncompleteCholesky.h:58
SparseMatrix< Scalar, ColMajor, StorageIndex > FactorType
Definition IncompleteCholesky.h:55
RealScalar m_initialShift
Definition IncompleteCholesky.h:174
void setInitialShift(RealScalar shift)
Set the initial shift parameter .
Definition IncompleteCholesky.h:106
Matrix< Scalar, Dynamic, 1 > VectorSx
Definition IncompleteCholesky.h:56
bool m_analysisIsOk
Definition IncompleteCholesky.h:175
void analyzePattern(const MatrixType &mat)
Computes the fill reducing permutation vector using the sparsity pattern of mat.
Definition IncompleteCholesky.h:111
IncompleteCholesky(const MatrixType &matrix)
Definition IncompleteCholesky.h:78
@ UpLo
Definition IncompleteCholesky.h:60
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition IncompleteCholesky.h:84
const VectorRx & scalingS() const
Definition IncompleteCholesky.h:166
void compute(const MatrixType &mat)
Definition IncompleteCholesky.h:141
void _solve_impl(const Rhs &b, Dest &x) const
Definition IncompleteCholesky.h:149
@ MaxColsAtCompileTime
Definition IncompleteCholesky.h:63
@ ColsAtCompileTime
Definition IncompleteCholesky.h:62
SparseSolverBase< IncompleteCholesky< Scalar, _UpLo, _OrderingType > > Base
Definition IncompleteCholesky.h:48
VectorRx m_scale
Definition IncompleteCholesky.h:173
std::vector< std::list< StorageIndex > > VectorList
Definition IncompleteCholesky.h:59
OrderingType::PermutationType PermutationType
Definition IncompleteCholesky.h:53
bool m_factorizationIsOk
Definition IncompleteCholesky.h:176
const PermutationType & permutationP() const
Definition IncompleteCholesky.h:169
ComputationInfo m_info
Definition IncompleteCholesky.h:177
void factorize(const MatrixType &mat)
Performs the numerical factorization of the input matrix mat.
bool m_isInitialized
Definition SparseSolverBase.h:119
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition IncompleteCholesky.h:87
_OrderingType OrderingType
Definition IncompleteCholesky.h:52
FactorType m_L
Definition IncompleteCholesky.h:172
PermutationType m_perm
Definition IncompleteCholesky.h:178
ComputationInfo info() const
Reports whether previous computation was successful.
Definition IncompleteCholesky.h:98
IncompleteCholesky()
Definition IncompleteCholesky.h:73
const FactorType & matrixL() const
Definition IncompleteCholesky.h:163
NumTraits< Scalar >::Real RealScalar
Definition IncompleteCholesky.h:51
Matrix< RealScalar, Dynamic, 1 > VectorRx
Definition IncompleteCholesky.h:57
A matrix or vector expression mapping an existing array of data.
Definition Map.h:96
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:180
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Definition PlainObjectBase.h:271
A matrix or vector expression mapping an existing expression.
Definition Ref.h:283
SparseSymmetricPermutationProduct< Derived, Upper|Lower > twistedBy(const PermutationMatrix< Dynamic, Dynamic, StorageIndex > &perm) const
Definition SparseMatrixBase.h:329
const AdjointReturnType adjoint() const
Definition SparseMatrixBase.h:356
A versatible sparse matrix representation.
Definition SparseMatrix.h:98
Index rows() const
Definition SparseMatrix.h:138
const StorageIndex * innerIndexPtr() const
Definition SparseMatrix.h:159
const StorageIndex * outerIndexPtr() const
Definition SparseMatrix.h:168
Index cols() const
Definition SparseMatrix.h:140
const Scalar * valuePtr() const
Definition SparseMatrix.h:150
void resize(Index rows, Index cols)
Definition SparseMatrix.h:626
A base class for sparse solvers.
Definition SparseSolverBase.h:68
bool m_isInitialized
Definition SparseSolverBase.h:119
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
Definition common.h:110
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition gnuplot_common_settings.hh:12
ComputationInfo
Definition Constants.h:440
@ NumericalIssue
Definition Constants.h:444
@ Success
Definition Constants.h:442
A triangularView< Lower >().adjoint().solveInPlace(B)
Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
Definition IncompleteLUT.h:29
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Definition MathFunctions.h:1091
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T &x, const T &y)
Definition MathFunctions.h:1083
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition MathFunctions.h:1292
Namespace containing all symbols from the Eigen library.
Definition bench_norm.cpp:85
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:74
const int Dynamic
Definition Constants.h:22
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition NumTraits.h:233
std::ptrdiff_t j
Definition tut_arithmetic_redux_minmax.cpp:2