10#ifndef EIGEN_MATRIX_POWER
11#define EIGEN_MATRIX_POWER
15template<
typename MatrixType>
class MatrixPower;
38template<
typename MatrixType>
58 template<
typename ResultType>
59 inline void evalTo(ResultType& result)
const
60 { m_pow.compute(result, m_p); }
85template<
typename MatrixType>
90 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
91 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
93 typedef typename MatrixType::Scalar Scalar;
94 typedef typename MatrixType::RealScalar RealScalar;
95 typedef std::complex<RealScalar> ComplexScalar;
104 static int getPadeDegree(
float normIminusT);
105 static int getPadeDegree(
double normIminusT);
106 static int getPadeDegree(
long double normIminusT);
107 static ComplexScalar computeSuperDiag(
const ComplexScalar&,
const ComplexScalar&, RealScalar
p);
108 static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar
p);
133template<
typename MatrixType>
141template<
typename MatrixType>
145 switch (m_A.rows()) {
149 res(0,0) = pow(m_A(0,0), m_p);
152 compute2x2(
res, m_p);
159template<
typename MatrixType>
166 res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) +
res).
template triangularView<Upper>()
169 res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
173template<
typename MatrixType>
174void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType&
res,
RealScalar p)
const
178 res.coeffRef(0,0) =
pow(m_A.coeff(0,0),
p);
180 for (
Index i=1;
i < m_A.cols(); ++
i) {
182 if (m_A.coeff(
i-1,
i-1) == m_A.coeff(
i,
i))
184 else if (2*
abs(m_A.coeff(
i-1,
i-1)) <
abs(m_A.coeff(
i,
i)) || 2*
abs(m_A.coeff(
i,
i)) <
abs(m_A.coeff(
i-1,
i-1)))
185 res.coeffRef(
i-1,
i) = (
res.coeff(
i,
i)-
res.coeff(
i-1,
i-1)) / (m_A.coeff(
i,
i)-m_A.coeff(
i-1,
i-1));
187 res.coeffRef(
i-1,
i) = computeSuperDiag(m_A.coeff(
i,
i), m_A.coeff(
i-1,
i-1),
p);
188 res.coeffRef(
i-1,
i) *= m_A.coeff(
i-1,
i);
192template<
typename MatrixType>
193void MatrixPowerAtomic<MatrixType>::computeBig(ResultType&
res)
const
196 const int digits = std::numeric_limits<RealScalar>::digits;
198 digits <= 24? 4.3386528e-1L
199 : digits <= 53? 2.789358995219730e-1L
200 : digits <= 64? 2.4471944416607995472e-1L
201 : digits <= 106? 1.1016843812851143391275867258512e-1L
202 : 9.134603732914548552537150753385375e-2L);
203 MatrixType IminusT, sqrtT,
T = m_A.template triangularView<Upper>();
205 int degree, degree2, numberOfSquareRoots = 0;
206 bool hasExtraSquareRoot =
false;
208 for (
Index i=0;
i < m_A.cols(); ++
i)
212 IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) -
T;
213 normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
214 if (normIminusT < maxNormForPade) {
215 degree = getPadeDegree(normIminusT);
216 degree2 = getPadeDegree(normIminusT/2);
217 if (degree - degree2 <= 1 || hasExtraSquareRoot)
219 hasExtraSquareRoot =
true;
222 T = sqrtT.template triangularView<Upper>();
223 ++numberOfSquareRoots;
225 computePade(degree, IminusT,
res);
227 for (; numberOfSquareRoots; --numberOfSquareRoots) {
228 compute2x2(
res, ldexp(m_p, -numberOfSquareRoots));
229 res =
res.template triangularView<Upper>() *
res;
231 compute2x2(
res, m_p);
234template<
typename MatrixType>
235inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(
float normIminusT)
237 const float maxNormForPade[] = { 2.8064004e-1f , 4.3386528e-1f };
239 for (; degree <= 4; ++degree)
240 if (normIminusT <= maxNormForPade[degree - 3])
245template<
typename MatrixType>
246inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(
double normIminusT)
248 const double maxNormForPade[] = { 1.884160592658218e-2 , 6.038881904059573e-2, 1.239917516308172e-1,
249 1.999045567181744e-1, 2.789358995219730e-1 };
251 for (; degree <= 7; ++degree)
252 if (normIminusT <= maxNormForPade[degree - 3])
257template<
typename MatrixType>
258inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(
long double normIminusT)
260#if LDBL_MANT_DIG == 53
261 const int maxPadeDegree = 7;
262 const double maxNormForPade[] = { 1.884160592658218e-2L , 6.038881904059573e-2L, 1.239917516308172e-1L,
263 1.999045567181744e-1L, 2.789358995219730e-1L };
264#elif LDBL_MANT_DIG <= 64
265 const int maxPadeDegree = 8;
266 const long double maxNormForPade[] = { 6.3854693117491799460e-3L , 2.6394893435456973676e-2L,
267 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
268#elif LDBL_MANT_DIG <= 106
269 const int maxPadeDegree = 10;
270 const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L ,
271 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
272 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
273 1.1016843812851143391275867258512e-1L };
275 const int maxPadeDegree = 10;
276 const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L ,
277 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
278 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
279 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
280 9.134603732914548552537150753385375e-2L };
283 for (; degree <= maxPadeDegree; ++degree)
284 if (normIminusT <= maxNormForPade[degree - 3])
289template<
typename MatrixType>
290inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
291MatrixPowerAtomic<MatrixType>::computeSuperDiag(
const ComplexScalar& curr,
const ComplexScalar& prev,
RealScalar p)
298 ComplexScalar logCurr =
log(curr);
299 ComplexScalar logPrev =
log(prev);
305template<
typename MatrixType>
306inline typename MatrixPowerAtomic<MatrixType>::RealScalar
314 return 2 *
exp(
p * (
log(curr) +
log(prev)) / 2) *
sinh(
p *
w) / (curr - prev);
336template<
typename MatrixType>
340 typedef typename MatrixType::Scalar Scalar;
341 typedef typename MatrixType::RealScalar RealScalar;
354 m_conditionNumber(0),
376 template<
typename ResultType>
383 typedef std::complex<RealScalar> ComplexScalar;
385 MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> ComplexMatrix;
388 typename MatrixType::Nested m_A;
394 ComplexMatrix m_T, m_U;
427 template<
typename ResultType>
430 template<
typename ResultType>
433 template<
int Rows,
int Cols,
int Options,
int MaxRows,
int MaxCols>
434 static void revertSchur(
436 const ComplexMatrix&
T,
437 const ComplexMatrix& U);
439 template<
int Rows,
int Cols,
int Options,
int MaxRows,
int MaxCols>
440 static void revertSchur(
442 const ComplexMatrix&
T,
443 const ComplexMatrix& U);
446template<
typename MatrixType>
447template<
typename ResultType>
455 res(0,0) = pow(m_A.coeff(0,0),
p);
462 computeIntPower(
res, intpart);
463 if (
p) computeFracPower(
res,
p);
467template<
typename MatrixType>
478 if (!m_conditionNumber &&
p)
482 if (
p >
RealScalar(0.5) &&
p > (1-
p) * pow(m_conditionNumber,
p)) {
488template<
typename MatrixType>
489void MatrixPower<MatrixType>::initialize()
491 const ComplexSchur<MatrixType>
schurOfA(m_A);
492 JacobiRotation<ComplexScalar>
rot;
493 ComplexScalar eigenvalue;
495 m_fT.resizeLike(m_A);
498 m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff();
506 eigenvalue = m_T.coeff(
j,
j);
507 rot.makeGivens(m_T.coeff(
j-1,
j), eigenvalue);
508 m_T.applyOnTheRight(
j-1,
j,
rot);
509 m_T.applyOnTheLeft(
j-1,
j,
rot.adjoint());
510 m_T.coeffRef(
j-1,
j-1) = eigenvalue;
512 m_U.applyOnTheRight(
j-1,
j,
rot);
518 m_nulls =
rows() - m_rank;
520 eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero()
521 &&
"Base of matrix power should be invertible or with a semisimple zero eigenvalue.");
526template<
typename MatrixType>
527template<
typename ResultType>
528void MatrixPower<MatrixType>::computeIntPower(ResultType&
res,
RealScalar p)
535 m_tmp = m_A.inverse();
540 if (
fmod(pp, 2) >= 1)
549template<
typename MatrixType>
550template<
typename ResultType>
551void MatrixPower<MatrixType>::computeFracPower(ResultType&
res,
RealScalar p)
553 Block<ComplexMatrix,Dynamic,Dynamic> blockTp(m_fT, 0, 0, m_rank, m_rank);
557 MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank),
p).compute(blockTp);
559 m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>()
560 .solve(blockTp * m_T.topRightCorner(m_rank, m_nulls));
562 revertSchur(m_tmp, m_fT, m_U);
566template<
typename MatrixType>
567template<
int Rows,
int Cols,
int Options,
int MaxRows,
int MaxCols>
568inline void MatrixPower<MatrixType>::revertSchur(
569 Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>&
res,
570 const ComplexMatrix&
T,
571 const ComplexMatrix& U)
572{
res.noalias() = U * (
T.template triangularView<Upper>() * U.adjoint()); }
574template<
typename MatrixType>
575template<
int Rows,
int Cols,
int Options,
int MaxRows,
int MaxCols>
576inline void MatrixPower<MatrixType>::revertSchur(
577 Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>&
res,
578 const ComplexMatrix&
T,
579 const ComplexMatrix& U)
580{
res.noalias() = (U * (
T.template triangularView<Upper>() * U.adjoint())).real(); }
595template<
typename Derived>
617 template<
typename ResultType>
618 inline void evalTo(ResultType& result)
const
642template<
typename Derived>
667 template<
typename ResultType>
668 inline void evalTo(ResultType& result)
const
669 { result = (m_p * m_A.log()).exp(); }
681template<
typename MatrixPowerType>
682struct traits< MatrixPowerParenthesesReturnValue<MatrixPowerType> >
683{
typedef typename MatrixPowerType::PlainObject ReturnType; };
685template<
typename Derived>
686struct traits< MatrixPowerReturnValue<Derived> >
687{
typedef typename Derived::PlainObject ReturnType; };
689template<
typename Derived>
690struct traits< MatrixComplexPowerReturnValue<Derived> >
691{
typedef typename Derived::PlainObject ReturnType; };
695template<
typename Derived>
696const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(
const RealScalar&
p)
const
697{
return MatrixPowerReturnValue<Derived>(derived(),
p); }
699template<
typename Derived>
700const MatrixComplexPowerReturnValue<Derived> MatrixBase<Derived>::pow(
const std::complex<RealScalar>&
p)
const
701{
return MatrixComplexPowerReturnValue<Derived>(derived(),
p); }
EIGEN_DEVICE_FUNC const FloorReturnType floor() const
Definition ArrayCwiseUnaryOps.h:481
EIGEN_DEVICE_FUNC const LogReturnType log() const
Definition ArrayCwiseUnaryOps.h:128
EIGEN_DEVICE_FUNC const CeilReturnType ceil() const
Definition ArrayCwiseUnaryOps.h:495
int i
Definition BiCGSTAB_step_by_step.cpp:9
cout<< "Here is a random 4x4 matrix, A:"<< endl<< A<< endl<< endl;ComplexSchur< MatrixXcf > schurOfA(A, false)
#define EIGEN_PI
Definition MathFunctions.h:16
#define eigen_assert(x)
Definition Macros.h:1037
RowVector3d w
Definition Matrix_resize_int.cpp:3
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
Definition PartialRedux_count.cpp:3
float * p
Definition Tutorial_Map_using.cpp:9
int rows
Definition Tutorial_commainit_02.cpp:1
int cols
Definition Tutorial_commainit_02.cpp:1
Eigen::Triplet< double > T
Definition Tutorial_sparse_example.cpp:6
NumTraits< Scalar >::Real RealScalar
Definition bench_gemm.cpp:47
MatrixXf MatrixType
Definition benchmark-blocking-sizes.cpp:52
Expression of a fixed-size or dynamic-size block.
Definition Block.h:105
Proxy for the matrix power of some matrix (expression).
Definition MatrixPower.h:644
MatrixComplexPowerReturnValue(const Derived &A, const ComplexScalar &p)
Constructor.
Definition MatrixPower.h:655
Derived::PlainObject PlainObject
Definition MatrixPower.h:646
Index cols() const
Definition MatrixPower.h:672
std::complex< typename Derived::RealScalar > ComplexScalar
Definition MatrixPower.h:647
void evalTo(ResultType &result) const
Compute the matrix power.
Definition MatrixPower.h:668
Index rows() const
Definition MatrixPower.h:671
Class for computing matrix powers.
Definition MatrixPower.h:87
MatrixPowerAtomic(const MatrixType &T, RealScalar p)
Constructor.
Definition MatrixPower.h:134
void compute(ResultType &res) const
Compute the matrix power.
Definition MatrixPower.h:142
Proxy for the matrix power of some matrix.
Definition MatrixPower.h:40
MatrixType::RealScalar RealScalar
Definition MatrixPower.h:42
Index rows() const
Definition MatrixPower.h:62
Index cols() const
Definition MatrixPower.h:63
MatrixPowerParenthesesReturnValue(MatrixPower< MatrixType > &pow, RealScalar p)
Constructor.
Definition MatrixPower.h:50
void evalTo(ResultType &result) const
Compute the matrix power.
Definition MatrixPower.h:59
Proxy for the matrix power of some matrix (expression).
Definition MatrixPower.h:597
Index cols() const
Definition MatrixPower.h:622
MatrixPowerReturnValue(const Derived &A, RealScalar p)
Constructor.
Definition MatrixPower.h:608
Derived::RealScalar RealScalar
Definition MatrixPower.h:600
void evalTo(ResultType &result) const
Compute the matrix power.
Definition MatrixPower.h:618
Index rows() const
Definition MatrixPower.h:621
Derived::PlainObject PlainObject
Definition MatrixPower.h:599
Class for computing matrix powers.
Definition MatrixPower.h:338
Index cols() const
Definition MatrixPower.h:380
MatrixPower(const MatrixType &A)
Constructor.
Definition MatrixPower.h:352
const MatrixPowerParenthesesReturnValue< MatrixType > operator()(RealScalar p)
Returns the matrix power.
Definition MatrixPower.h:366
void compute(ResultType &res, RealScalar p)
Compute the matrix power.
Definition MatrixPower.h:448
Index rows() const
Definition MatrixPower.h:379
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:180
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition PlainObjectBase.h:145
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition PlainObjectBase.h:143
Definition ReturnByValue.h:52
#define abs(x)
Definition datatypes.h:17
int EIGEN_BLAS_FUNC() rot(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
Definition level1_real_impl.h:79
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 fmod(const bfloat16 &a, const bfloat16 &b)
Definition BFloat16.h:567
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 exp(const bfloat16 &a)
Definition BFloat16.h:493
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition BFloat16.h:514
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 sinh(const bfloat16 &a)
Definition BFloat16.h:535
Namespace containing all symbols from the Eigen library.
Definition bench_norm.cpp:85
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:74
const int Dynamic
Definition Constants.h:22
void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
Compute matrix square root of triangular matrix.
Definition MatrixSquareRoot.h:204
Definition BandTriangularSolver.h:13
internal::nested_eval< T, 1 >::type eval(const T &xpr)
Definition sparse_permutations.cpp:38
std::ptrdiff_t j
Definition tut_arithmetic_redux_minmax.cpp:2