34 template <
typename _Scalar,
int _Dim,
int _Degree>
80 template <
typename OtherVectorType,
typename OtherArrayType>
87 template <
int OtherDegree>
89 m_knots(spline.
knots()), m_ctrls(spline.
ctrls()) {}
134 template <
int DerivativeOrder>
178 template <
int DerivativeOrder>
224 template <
typename DerivativeType>
225 static void BasisFunctionDerivativesImpl(
233 template <
typename _Scalar,
int _Dim,
int _Degree>
240 if (u <= knots(0))
return degree;
241 const Scalar* pos = std::upper_bound(knots.data()+degree-1, knots.data()+knots.size()-degree-1, u);
242 return static_cast<DenseIndex>( std::distance(knots.data(), pos) - 1 );
245 template <
typename _Scalar,
int _Dim,
int _Degree>
270 const Scalar tmp =
N(r)/(right(r+1)+left(
j-r));
271 N[r] = saved + right(r+1)*tmp;
272 saved = left(
j-r)*tmp;
279 template <
typename _Scalar,
int _Dim,
int _Degree>
283 return m_knots.size() - m_ctrls.cols() - 1;
288 template <
typename _Scalar,
int _Dim,
int _Degree>
294 template <
typename _Scalar,
int _Dim,
int _Degree>
305 return (ctrl_weights * ctrl_pts).rowwise().sum();
310 template <
typename SplineType,
typename DerivativeType>
315 enum { DerivativeOrder = DerivativeType::ColsAtCompileTime };
319 typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr;
326 der.resize(Dimension,
n+1);
329 const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u,
n+1);
332 for (
DenseIndex der_order=0; der_order<
n+1; ++der_order)
336 der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum();
340 template <
typename _Scalar,
int _Dim,
int _Degree>
341 typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::DerivativeType
349 template <
typename _Scalar,
int _Dim,
int _Degree>
350 template <
int DerivativeOrder>
359 template <
typename _Scalar,
int _Dim,
int _Degree>
369 template <
typename _Scalar,
int _Dim,
int _Degree>
370 template <
typename DerivativeType>
387 BasisVectorType left = BasisVectorType::Zero(
p+1);
388 BasisVectorType right = BasisVectorType::Zero(
p+1);
390 Matrix<Scalar,Order,Order> ndu(
p+1,
p+1);
399 left[
j] = u-U[span+1-
j];
400 right[
j] = U[span+
j]-u;
406 ndu(
j,r) = right[r+1]+left[
j-r];
407 temp = ndu(r,
j-1)/ndu(
j,r);
409 ndu(r,
j) =
static_cast<Scalar>(saved+right[r+1] * temp);
410 saved = left[
j-r] * temp;
413 ndu(
j,
j) =
static_cast<Scalar>(saved);
416 for (
j =
p;
j>=0; --
j)
420 DerivativeType
a(
n+1,
p+1);
429 for (
DenseIndex k=1; k<=static_cast<DenseIndex>(
n); ++k)
437 a(s2,0) =
a(s1,0)/ndu(pk+1,rk);
438 d =
a(s2,0)*ndu(rk,pk);
444 if (r-1 <= pk) j2 = k-1;
447 for (
j=j1;
j<=j2; ++
j)
449 a(s2,
j) = (
a(s1,
j)-
a(s1,
j-1))/ndu(pk+1,rk+
j);
450 d +=
a(s2,
j)*ndu(rk+
j,pk);
455 a(s2,k) = -
a(s1,k-1)/ndu(pk+1,r);
456 d +=
a(s2,k)*ndu(r,pk);
459 N_(k,r) =
static_cast<Scalar>(d);
460 j = s1; s1 = s2; s2 =
j;
467 for (
DenseIndex k=1; k<=static_cast<DenseIndex>(
n); ++k)
469 for (
j=
p;
j>=0; --
j) N_(k,
j) *= r;
474 template <
typename _Scalar,
int _Dim,
int _Degree>
475 typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
479 BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
483 template <
typename _Scalar,
int _Dim,
int _Degree>
484 template <
int DerivativeOrder>
489 BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
493 template <
typename _Scalar,
int _Dim,
int _Degree>
502 BasisFunctionDerivativesImpl(u, order, degree, knots, der);
ArrayXXi a
Definition Array_initializer_list_23_cxx11.cpp:1
int n
Definition BiCGSTAB_simple.cpp:1
int i
Definition BiCGSTAB_step_by_step.cpp:9
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
Definition PartialRedux_count.cpp:3
float * p
Definition Tutorial_Map_using.cpp:9
SCALAR Scalar
Definition bench_gemm.cpp:46
General-purpose arrays with easy API for coefficient-wise operations.
Definition Array.h:47
Expression of a fixed-size or dynamic-size block.
Definition Block.h:105
Expression of the multiple replication of a matrix or vector.
Definition Replicate.h:63
A class representing multi-dimensional spline curves.
Definition Spline.h:36
SplineTraits< Spline >::ParameterVectorType ParameterVectorType
The data type used to store parameter vectors.
Definition Spline.h:49
SplineTraits< Spline >::KnotVectorType KnotVectorType
The data type used to store knot vectors.
Definition Spline.h:46
DenseIndex degree() const
Returns the spline degree.
Definition Spline.h:280
Spline(const Spline< Scalar, Dimension, OtherDegree > &spline)
Copy constructor for splines.
Definition Spline.h:88
SplineTraits< Spline >::BasisDerivativeType basisFunctionDerivatives(Scalar u, DenseIndex order) const
Computes the non-zero spline basis function derivatives up to given order.
Definition Spline.h:476
SplineTraits< Spline >::BasisVectorType BasisVectorType
The data type used to store non-zero basis functions.
Definition Spline.h:52
const ControlPointVectorType & ctrls() const
Returns the ctrls of the underlying spline.
Definition Spline.h:99
Spline()
Creates a (constant) zero spline. For Splines with dynamic degree, the resulting degree will be 0.
Definition Spline.h:64
PointType operator()(Scalar u) const
Returns the spline value at a given site .
Definition Spline.h:295
SplineTraits< Spline >::DerivativeType derivatives(Scalar u, DenseIndex order) const
Evaluation of spline derivatives of up-to given order.
Definition Spline.h:342
@ Dimension
Definition Spline.h:39
_Scalar Scalar
Definition Spline.h:38
SplineTraits< Spline >::PointType PointType
The point type the spline is representing.
Definition Spline.h:43
SplineTraits< Spline >::BasisDerivativeType BasisDerivativeType
The data type used to store the values of the basis function derivatives.
Definition Spline.h:55
static DenseIndex Span(typename SplineTraits< Spline >::Scalar u, DenseIndex degree, const typename SplineTraits< Spline >::KnotVectorType &knots)
Computes the span within the provided knot vector in which u is falling.
Definition Spline.h:234
static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType &knots)
Returns the spline's non-zero basis functions.
Definition Spline.h:247
static BasisDerivativeType BasisFunctionDerivatives(const Scalar u, const DenseIndex order, const DenseIndex degree, const KnotVectorType &knots)
Computes the non-zero spline basis function derivatives up to given order.
Definition Spline.h:495
DenseIndex span(Scalar u) const
Returns the span within the knot vector in which u is falling.
Definition Spline.h:289
SplineTraits< Spline >::ControlPointVectorType ControlPointVectorType
The data type representing the spline's control points.
Definition Spline.h:58
Spline(const OtherVectorType &knots, const OtherArrayType &ctrls)
Creates a spline from a knot vector and control points.
Definition Spline.h:81
@ Degree
Definition Spline.h:40
const KnotVectorType & knots() const
Returns the knots of the underlying spline.
Definition Spline.h:94
SplineTraits< Spline >::BasisVectorType basisFunctions(Scalar u) const
Computes the non-zero basis functions at the given site.
Definition Spline.h:361
Expression of a fixed-size or dynamic-size sub-vector.
Definition VectorBlock.h:60
@ N
Definition constructor.cpp:23
Namespace containing all symbols from the Eigen library.
Definition bench_norm.cpp:85
EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
Definition Meta.h:66
const int Dynamic
Definition Constants.h:22
void derivativesImpl(const SplineType &spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType &der)
Definition Spline.h:311
Definition SplineFwd.h:19
std::ptrdiff_t j
Definition tut_arithmetic_redux_minmax.cpp:2