TR-mbed 1.0
Loading...
Searching...
No Matches
TensorContraction.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
11#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
12
13namespace Eigen {
14
22namespace internal {
23
24template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
25struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >
26{
27 // Type promotion to handle the case where the types of the lhs and the rhs are different.
30
35 typedef typename LhsXprType::Nested LhsNested;
36 typedef typename RhsXprType::Nested RhsNested;
39
40 // From NumDims below.
42 static const int Layout = traits<LhsXprType>::Layout;
47
48 enum {
49 Flags = 0
50 };
51};
52
53template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
58
59template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
64
65template<typename Indices_, typename LeftArgType_, typename RightArgType_, typename OutputKernelType_, typename Device_>
76
77// Helper class to allocate and deallocate temporary memory for packed buffers.
78template <typename LhsScalar, typename RhsScalar>
80 typedef void* BlockMemHandle;
81
82 template <typename Device>
83 EIGEN_DEVICE_FUNC static BlockMemHandle allocate(Device& d, const Index bm,
84 const Index bk,
85 const Index bn,
86 LhsScalar** lhs_block,
87 RhsScalar** rhs_block) {
90 BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn);
91 char* block_mem = static_cast<char*>(d.allocate(sz.lhs_size + sz.rhs_size));
93 *lhs_block = reinterpret_cast<LhsScalar*>(block_mem);
94 *rhs_block = reinterpret_cast<RhsScalar*>(block_mem + sz.lhs_size);
95 return block_mem;
96 }
97
98 template <typename Device>
100 Device& d, const Index bm, const Index bk, const Index bn,
101 const Index num_lhs, const Index num_rhs, const Index num_slices,
102 std::vector<LhsScalar*>* lhs_blocks,
103 std::vector<RhsScalar*>* rhs_blocks) {
105 eigen_assert(num_lhs >= 0 && num_rhs >= 0);
108 BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn);
109 void* block_mem = d.allocate(
110 (num_lhs * sz.lhs_size + num_rhs * sz.rhs_size) * num_slices);
112 char* mem = static_cast<char*>(block_mem);
113
114 for (Index x = 0; x < num_slices; x++) {
115 if (num_lhs > 0) lhs_blocks[x].resize(num_lhs);
116 for (Index m = 0; m < num_lhs; m++) {
117 lhs_blocks[x][m] = reinterpret_cast<LhsScalar*>(mem);
118 mem += sz.lhs_size;
119 }
120 if (num_rhs > 0) rhs_blocks[x].resize(num_rhs);
121 for (Index n = 0; n < num_rhs; n++) {
122 rhs_blocks[x][n] = reinterpret_cast<RhsScalar*>(mem);
123 mem += sz.rhs_size;
124 }
125 }
126
127 return block_mem;
128 }
129
130 template <typename Device>
132 d.deallocate(handle);
133 }
134
135 private:
136 struct BlockSizes {
137 Index lhs_size;
138 Index rhs_size;
139 };
140 EIGEN_DEVICE_FUNC static BlockSizes ComputeLhsRhsBlockSizes(const Index bm,
141 const Index bk,
142 const Index bn) {
144 BlockSizes sz;
145 sz.lhs_size = divup<Index>(bm * bk * sizeof(LhsScalar), align) * align;
146 sz.rhs_size = divup<Index>(bn * bk * sizeof(RhsScalar), align) * align;
147 return sz;
148 }
149};
150
151// WARNING: In this code we assume that Lhs and Rhs tensor expressions are in
152// ColMajor storage order. This property is guaranteed by the
153// TensorContractionOp evaluator. TensorContractionKernel specifies how we pack
154// blocks of Lhs and Rhs tensor expressions, and how we invoke matrix
155// multiplication for these blocks. Default tensor contraction uses
156// gemm_pack_rhs, gemm_pack_lhs and gebp_kernel from Eigen Core (see
157// GeneralBlocPanelKernel.h for details).
158//
159// By specializing contraction kernels we can use other low level libraries to
160// perform matrix multiplication, and still rely on Eigen contraction evaluator.
161// This also includes full support in TensorContractionThreadPool, assuming that
162// underlying gemm do not use it's own threading.
163//
164// - ResScalar/LhsScalar/RhsScalar - scalar type for the result of
165// multiplication, lhs tensor and rhs tensor respectively.
166//
167// - StorageIndex - index type for the tensor expressions. In practice almost
168// always is Eigen::Index.
169//
170// - OutputMapper provides access to the memory of the output matrix. In
171// practice it's always column major blas_data_mapper (it must be of ResScalar
172// type).
173//
174// - LhsMapper/RhsMapper similarly to blas_data_mapper provide a two dimensional
175// view into the Lhs/Rhs tensor expressions. In practice it's
176// TensorContractionInputMapper, or some specialization of it based on the
177// type of tensor expression (e.g. TensorImagePatchOp has optimized input
178// mapper).
179template <typename ResScalar, typename LhsScalar, typename RhsScalar,
180 typename StorageIndex, typename OutputMapper, typename LhsMapper,
181 typename RhsMapper>
183 // True if `invoke()` supports `beta` in `C <- alpha * A * B + beta * C`
184 // (otherwise beta should be always equal to 1).
185 enum { HasBeta = false };
186
188 TensorContractionKernel(StorageIndex m_, StorageIndex k_, StorageIndex n_,
189 StorageIndex bm_, StorageIndex bk_, StorageIndex bn_)
190 : m(m_), k(k_), n(n_), bm(bm_), bk(bk_), bn(bn_) {}
191
192 // Pack blocks of Lhs and Rhs into contiguous blocks in memory.
193 typedef LhsScalar* LhsBlock;
194 typedef RhsScalar* RhsBlock;
195
196 // Packed Lhs/Rhs block memory allocator.
199 typedef typename BlockMemAllocator::BlockMemHandle BlockMemHandle;
200
202
204 LhsScalar, StorageIndex, typename LhsMapper::SubMapper, Traits::mr,
205 Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor>
207
208 typedef internal::gemm_pack_rhs<RhsScalar, StorageIndex,
209 typename RhsMapper::SubMapper, Traits::nr,
210 ColMajor>
212
213 typedef internal::gebp_kernel<LhsScalar, RhsScalar, StorageIndex,
214 OutputMapper, Traits::mr, Traits::nr,
215 /*ConjugateLhs*/ false, /*ConjugateRhs*/ false>
217
218 template <typename Device>
221 return BlockMemAllocator::allocate(d, bm, bk, bn, lhs_block, rhs_block);
222 }
223
224 template <typename Device>
226 Device& d, const StorageIndex num_lhs, const StorageIndex num_rhs,
227 const StorageIndex num_slices, std::vector<LhsBlock>* lhs_blocks,
228 std::vector<RhsBlock>* rhs_blocks) {
229 return BlockMemAllocator::allocateSlices(
230 d, bm, bk, bn, num_lhs, num_rhs, num_slices, lhs_blocks, rhs_blocks);
231 }
232
233 template <typename Device>
235 BlockMemAllocator::deallocate(d, handle);
236 }
237
239 LhsBlock* lhsBlock, const typename LhsMapper::SubMapper& data_mapper,
240 const StorageIndex depth, const StorageIndex rows) {
241 LhsPacker()(*lhsBlock, data_mapper, depth, rows, /*stride*/ 0,
242 /*offset*/ 0);
243 }
244
246 RhsBlock* rhsBlock, const typename RhsMapper::SubMapper& data_mapper,
247 const StorageIndex depth, const StorageIndex cols) {
249 }
250
253 const RhsBlock& rhsBlock, const StorageIndex rows,
254 const StorageIndex depth, const StorageIndex cols,
255 const ResScalar alpha, const ResScalar beta) {
256 // Default GEBP kernel does not support beta.
257 eigen_assert(beta == ResScalar(1));
258 static const int kComputeStrideFromBlockDimensions = -1;
262 /*offsetA*/ 0, /*offsetB*/ 0);
263 }
264
265 private:
266 // These are dimensions of the original Tensors, and selected block sizes. The
267 // actual block sizes passed to all function above might be smaller because of
268 // the partial blocks at the end.
269 const StorageIndex m;
270 const StorageIndex k;
271 const StorageIndex n;
272 const StorageIndex bm;
273 const StorageIndex bk;
274 const StorageIndex bn;
275};
276
277} // end namespace internal
278
279// Tensor contraction params that should enable to get from output matrix
280// 2-dimensional coordinates to the output tensor dimensions.
282 // TensorContraction evaluator assumes that both tensors are in ColMajor
283 // layout, if tensors are in RowMajor evaluator swap lhs with rhs.
285};
286
287// Output kernel allows to fuse operations into the tensor contraction.
288//
289// Examples:
290// 1. Elementwise Relu transformation following Conv2D.
291// 2. AddBias to the Conv2D output channels dimension.
292//
293// The NoOpOutputKernel implements an output kernel that does absolutely nothing.
310 template <typename Index, typename Scalar>
313 const TensorContractionParams& params, Index i,
314 Index j, Index num_rows, Index num_cols) const {
315 EIGEN_UNUSED_VARIABLE(output_mapper);
316 EIGEN_UNUSED_VARIABLE(params);
319 EIGEN_UNUSED_VARIABLE(num_rows);
320 EIGEN_UNUSED_VARIABLE(num_cols);
321 }
322};
323
324template<typename Indices, typename LhsXprType, typename RhsXprType, typename OutputKernelType = const NoOpOutputKernel>
325class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType, OutputKernelType>, ReadOnlyAccessors>
326{
327 public:
329 typedef typename internal::gebp_traits<typename LhsXprType::CoeffReturnType,
330 typename RhsXprType::CoeffReturnType>::ResScalar CoeffReturnType;
334
336 const LhsXprType& lhs, const RhsXprType& rhs, const Indices& dims,
337 const OutputKernelType& output_kernel = OutputKernelType())
338 : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims),
339 m_output_kernel(output_kernel) {}
340
342 const Indices& indices() const { return m_indices; }
343
347 lhsExpression() const { return m_lhs_xpr; }
348
351 rhsExpression() const { return m_rhs_xpr; }
352
354 const OutputKernelType& outputKernel() const { return m_output_kernel; }
355
356 protected:
357 typename LhsXprType::Nested m_lhs_xpr;
358 typename RhsXprType::Nested m_rhs_xpr;
359 const Indices m_indices;
360 const OutputKernelType m_output_kernel;
361};
362
363
364template<typename Derived>
366{
372
375 typedef typename XprType::Index Index;
380
381 enum {
382 IsAligned = true,
384 BlockAccess = false,
387 CoordAccess = false, // to be implemented
388 RawAccess = true
389 };
390
391 //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
393 //===--------------------------------------------------------------------===//
394
395 // Most of the code is assuming that both input tensors are ColMajor. If the
396 // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
397 // If we want to compute A * B = C, where A is LHS and B is RHS, the code
398 // will pretend B is LHS and A is RHS.
399 typedef typename internal::conditional<
400 static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
401 typedef typename internal::conditional<
402 static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
403
406
407 static const int LDims =
409 static const int RDims =
412 static const int NumDims = LDims + RDims - 2 * ContractDims;
413
417
419
422 : m_leftImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
423 op.lhsExpression(), op.rhsExpression()), device),
424 m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
425 op.rhsExpression(), op.lhsExpression()), device),
426 m_device(device),
427 m_output_kernel(op.outputKernel()),
428 m_result(NULL) {
431 YOU_MADE_A_PROGRAMMING_MISTAKE);
432
433
434 DSizes<Index, LDims> eval_left_dims;
435 DSizes<Index, RDims> eval_right_dims;
436 array<IndexPair<Index>, ContractDims> eval_op_indices;
437 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
438 // For ColMajor, we keep using the existing dimensions
439 for (int i = 0; i < LDims; i++) {
440 eval_left_dims[i] = m_leftImpl.dimensions()[i];
441 }
442 for (int i = 0; i < RDims; i++) {
443 eval_right_dims[i] = m_rightImpl.dimensions()[i];
444 }
445 // We keep the pairs of contracting indices.
446 for (int i = 0; i < ContractDims; i++) {
447 eval_op_indices[i].first = op.indices()[i].first;
448 eval_op_indices[i].second = op.indices()[i].second;
449 }
450 } else {
451 // For RowMajor, we need to reverse the existing dimensions
452 for (int i = 0; i < LDims; i++) {
453 eval_left_dims[i] = m_leftImpl.dimensions()[LDims - i - 1];
454 }
455 for (int i = 0; i < RDims; i++) {
456 eval_right_dims[i] = m_rightImpl.dimensions()[RDims - i - 1];
457 }
458 // We need to flip all the pairs of contracting indices as well as
459 // reversing the dimensions.
460 for (int i = 0; i < ContractDims; i++) {
461 eval_op_indices[i].first = LDims - 1 - op.indices()[ContractDims - 1 - i].second;
462 eval_op_indices[i].second = RDims - 1 - op.indices()[ContractDims - 1 - i].first;
463 }
464 }
465
466 // Check for duplicate axes and make sure the first index in eval_op_indices
467 // is increasing. Using O(n^2) sorting is OK since ContractDims is small
468 for (int i = 0; i < ContractDims; i++) {
469 for (int j = i + 1; j < ContractDims; j++) {
470 eigen_assert(eval_op_indices[j].first != eval_op_indices[i].first &&
471 eval_op_indices[j].second != eval_op_indices[i].second &&
472 "contraction axes should be unique");
473 if (eval_op_indices[j].first < eval_op_indices[i].first) {
474 numext::swap(eval_op_indices[j], eval_op_indices[i]);
475 }
476 }
477 }
478
479 array<Index, LDims> lhs_strides;
480 lhs_strides[0] = 1;
481 for (int i = 0; i < LDims-1; ++i) {
482 lhs_strides[i+1] = lhs_strides[i] * eval_left_dims[i];
483 }
484
485 array<Index, RDims> rhs_strides;
486 rhs_strides[0] = 1;
487 for (int i = 0; i < RDims-1; ++i) {
488 rhs_strides[i+1] = rhs_strides[i] * eval_right_dims[i];
489 }
490
491 if (m_i_strides.size() > 0) m_i_strides[0] = 1;
492 if (m_j_strides.size() > 0) m_j_strides[0] = 1;
493 if (m_k_strides.size() > 0) m_k_strides[0] = 1;
494
495 m_i_size = 1;
496 m_j_size = 1;
497 m_k_size = 1;
498
499 // To compute the dimension, we simply concatenate the non-contracting
500 // dimensions of the left and then the right tensor. Additionally, we also
501 // compute the strides corresponding to the left non-contracting
502 // dimensions and right non-contracting dimensions.
504 int dim_idx = 0;
505 Index nocontract_idx = 0;
506
507 for (int i = 0; i < LDims; i++) {
508 // find if we are contracting on index i of left tensor
509 bool contracting = false;
510 for (int j = 0; j < ContractDims; j++) {
511 if (eval_op_indices[j].first == i) {
512 contracting = true;
513 break;
514 }
515 }
516 if (!contracting) {
517 // add dimension size to output dimensions
518 m_dimensions[dim_idx] = eval_left_dims[i];
519 m_left_nocontract_strides[nocontract_idx] = lhs_strides[i];
520 if (dim_idx != i) {
522 }
523 if (nocontract_idx+1 < internal::array_size<left_nocontract_t>::value) {
524 m_i_strides[nocontract_idx+1] =
525 m_i_strides[nocontract_idx] * eval_left_dims[i];
526 } else {
527 m_i_size = m_i_strides[nocontract_idx] * eval_left_dims[i];
528 }
529 dim_idx++;
530 nocontract_idx++;
531 }
532 }
533
534 nocontract_idx = 0;
535 for (int i = 0; i < RDims; i++) {
536 bool contracting = false;
537 // find if we are contracting on index i of right tensor
538 for (int j = 0; j < ContractDims; j++) {
539 if (eval_op_indices[j].second == i) {
540 contracting = true;
541 break;
542 }
543 }
544 if (!contracting) {
545 m_dimensions[dim_idx] = eval_right_dims[i];
547 m_j_strides[nocontract_idx+1] =
548 m_j_strides[nocontract_idx] * eval_right_dims[i];
549 } else {
550 m_j_size = m_j_strides[nocontract_idx] * eval_right_dims[i];
551 }
552 m_right_nocontract_strides[nocontract_idx] = rhs_strides[i];
553 dim_idx++;
554 nocontract_idx++;
555 }
556 }
557
558 // Now compute the strides corresponding to the contracting dimensions. We
559 // assumed above that non-contracting axes are represented in the same order
560 // in the matrix as they are in the tensor. This is not the case for
561 // contracting axes. As the contracting axes must be of the same size in
562 // each tensor, we'll only look at the first tensor here.
565 for (int i = 0; i < ContractDims; i++) {
566 Index left = eval_op_indices[i].first;
567 Index right = eval_op_indices[i].second;
568
569 Index size = eval_left_dims[left];
570 eigen_assert(size == eval_right_dims[right] &&
571 "Contraction axes must be same size");
572
573 if (i+1 < static_cast<int>(internal::array_size<contract_t>::value)) {
575 } else {
577 }
578 m_left_contracting_strides[i] = lhs_strides[left];
579 m_right_contracting_strides[i] = rhs_strides[right];
580
581 if (i > 0 && right < eval_op_indices[i-1].second) {
583 }
584 if (right != i) {
586 }
587 }
588
589 // If the layout is RowMajor, we need to reverse the m_dimensions
590 if (static_cast<int>(Layout) == static_cast<int>(RowMajor)) {
591 for (int i = 0, j = NumDims - 1; i < j; i++, j--) {
593 }
594 }
595
596 // A set of parameters that will allow output kernel to get from output
597 // tensor dimensions (i, j) into the original tensor dimensions.
598 // TODO(ezhulenev): Add parameters required to infer output tensor index for
599 // more complex contractions than 2x2 on internal dimension.
601 }
602
604
608 if (data) {
609 evalTo(data);
610 return false;
611 } else {
612 m_result = static_cast<EvaluatorPointerType>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
614 return true;
615 }
616 }
617
618#ifdef EIGEN_USE_THREADS
619 template <typename EvalSubExprsCallback>
620 EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
621 EvaluatorPointerType dest, EvalSubExprsCallback done) {
622 m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done, dest](bool) {
623 m_rightImpl.evalSubExprsIfNeededAsync(nullptr, [this, done, dest](bool) {
624 if (dest) {
625 evalToAsync(dest, [done]() { done(false); });
626 } else {
627 m_result = static_cast<EvaluatorPointerType>(
628 m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
629 evalToAsync(m_result, [done]() { done(true); });
630 }
631 });
632 });
633 }
634#endif // EIGEN_USE_THREADS
635
636#ifndef TENSOR_CONTRACTION_DISPATCH
637#define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS) \
638 if (this->m_lhs_inner_dim_contiguous) { \
639 if (this->m_rhs_inner_dim_contiguous) { \
640 if (this->m_rhs_inner_dim_reordered) { \
641 METHOD<true, true, true, ALIGNMENT> ARGS; \
642 } else { \
643 METHOD<true, true, false, ALIGNMENT> ARGS; \
644 } \
645 } else { \
646 if (this->m_rhs_inner_dim_reordered) { \
647 METHOD<true, false, true, ALIGNMENT> ARGS; \
648 } else { \
649 METHOD<true, false, false, ALIGNMENT> ARGS; \
650 } \
651 } \
652 } else { \
653 if (this->m_rhs_inner_dim_contiguous) { \
654 if (this->m_rhs_inner_dim_reordered) { \
655 METHOD<false, true, true, ALIGNMENT> ARGS; \
656 } else { \
657 METHOD<false, true, false, ALIGNMENT> ARGS; \
658 } \
659 } else { \
660 if (this->m_rhs_inner_dim_reordered) { \
661 METHOD<false, false, true, ALIGNMENT> ARGS; \
662 } else { \
663 METHOD<false, false, false, ALIGNMENT> ARGS; \
664 } \
665 } \
666 }
667#endif
668
669#ifndef TENSOR_CONTRACTION_ASYNC_DISPATCH
670#define TENSOR_CONTRACTION_ASYNC_DISPATCH(METHOD, DONE, ALIGNMENT, ARGS, FN) \
671 if (this->m_lhs_inner_dim_contiguous) { \
672 if (this->m_rhs_inner_dim_contiguous) { \
673 if (this->m_rhs_inner_dim_reordered) { \
674 (new METHOD<DONE, true, true, true, ALIGNMENT> ARGS)->FN; \
675 } else { \
676 (new METHOD<DONE, true, true, false, ALIGNMENT> ARGS)->FN; \
677 } \
678 } else { \
679 if (this->m_rhs_inner_dim_reordered) { \
680 (new METHOD<DONE, true, false, true, ALIGNMENT> ARGS)->FN; \
681 } else { \
682 (new METHOD<DONE, true, false, false, ALIGNMENT> ARGS)->FN; \
683 } \
684 } \
685 } else { \
686 if (this->m_rhs_inner_dim_contiguous) { \
687 if (this->m_rhs_inner_dim_reordered) { \
688 (new METHOD<DONE, false, true, true, ALIGNMENT> ARGS)->FN; \
689 } else { \
690 (new METHOD<DONE, false, true, false, ALIGNMENT> ARGS)->FN; \
691 } \
692 } else { \
693 if (this->m_rhs_inner_dim_reordered) { \
694 (new METHOD<DONE, false, false, true, ALIGNMENT> ARGS)->FN; \
695 } else { \
696 (new METHOD<DONE, false, false, false, ALIGNMENT> ARGS)->FN; \
697 } \
698 } \
699 }
700#endif
701
702 EIGEN_DEVICE_FUNC void evalTo(Scalar* buffer) const {
703 static_cast<const Derived*>(this)->template evalProduct<Unaligned>(buffer);
704 }
705
706#ifdef EIGEN_USE_THREADS
707 template <typename EvalToCallback>
708 void evalToAsync(Scalar* buffer, EvalToCallback done) const {
709 static_cast<const Derived*>(this)
710 ->template evalProductAsync<EvalToCallback, Unaligned>(buffer,
711 std::move(done));
712 }
713#endif // EIGEN_USE_THREADS
714
715 template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
716 bool rhs_inner_dim_reordered, int Alignment>
717 void evalProductSequential(Scalar* buffer) const {
718 if (this->m_j_size == 1) {
719 this->template evalGemv<lhs_inner_dim_contiguous,
720 rhs_inner_dim_contiguous, rhs_inner_dim_reordered,
721 Alignment>(buffer);
722 } else {
723 this->template evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous,
724 rhs_inner_dim_reordered, Alignment>(buffer);
725 }
726 }
727
728 template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
729 #if !defined(EIGEN_HIPCC)
731 #endif
732 void evalGemv(Scalar* buffer) const {
733 const Index rows = m_i_size;
734 const Index cols = m_k_size;
735
738 typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
739 typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
742 const int lhs_alignment = LeftEvaluator::IsAligned ? Aligned : Unaligned;
743 const int rhs_alignment = RightEvaluator::IsAligned ? Aligned : Unaligned;
745 LeftEvaluator, left_nocontract_t,
746 contract_t, lhs_packet_size,
747 lhs_inner_dim_contiguous,
748 false, lhs_alignment> LhsMapper;
749
751 RightEvaluator, right_nocontract_t,
752 contract_t, rhs_packet_size,
753 rhs_inner_dim_contiguous,
754 rhs_inner_dim_reordered, rhs_alignment> RhsMapper;
755
760
761 const Scalar alpha(1);
762 const Index resIncr(1);
763
764 // zero out the result buffer (which must be of size at least rows * sizeof(Scalar)
765 m_device.memset(buffer, 0, rows * sizeof(Scalar));
766
768 rows, cols, lhs, rhs,
769 buffer, resIncr, alpha);
770
772 m_output_kernel(OutputMapper(buffer, rows), m_tensor_contraction_params,
773 static_cast<Index>(0), static_cast<Index>(0), rows,
774 static_cast<Index>(1));
775 }
776
777 template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
778 #if !defined(EIGEN_HIPCC)
780 #endif
781 void evalGemm(Scalar* buffer) const {
782 // columns in left side, rows in right side
783 const Index k = this->m_k_size;
784 this->template evalGemmPartial<lhs_inner_dim_contiguous,
785 rhs_inner_dim_contiguous,
786 rhs_inner_dim_reordered,
787 Alignment, true>(buffer, 0, k, 1);
788 }
789
790 template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
791 bool rhs_inner_dim_reordered, int Alignment>
793 Scalar* buffer, Index k_start, Index k_end, int num_threads) const {
794 evalGemmPartial<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous,
795 rhs_inner_dim_reordered, Alignment,
796 /*use_output_kernel*/ false>(buffer, k_start, k_end,
797 num_threads);
798 }
799
800 template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment, bool use_output_kernel>
801 EIGEN_DEVICE_FUNC void evalGemmPartial(Scalar* buffer, Index k_start, Index k_end, int num_threads) const {
802 eigen_assert(k_end >= k_start && k_start >= 0 && k_end <= this->m_k_size);
803 // columns in slice on left side, rows on right side
804 const Index k_slice = k_end - k_start;
805
806 // rows in left side
807 const Index m = this->m_i_size;
808
809 // columns in right side
810 const Index n = this->m_j_size;
811
812 // define data mappers for Lhs and Rhs
815
816 typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
817 typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
818
821
823 LeftEvaluator, left_nocontract_t,
824 contract_t, lhs_packet_size,
825 lhs_inner_dim_contiguous,
826 false, Unaligned> LhsMapper;
827
829 RightEvaluator, right_nocontract_t,
830 contract_t, rhs_packet_size,
831 rhs_inner_dim_contiguous,
832 rhs_inner_dim_reordered, Unaligned> RhsMapper;
833
835
837 Scalar, LhsScalar, RhsScalar, Index, OutputMapper, LhsMapper, RhsMapper>
838 TensorContractionKernel;
839
840 // initialize data mappers
841 LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
843
844 RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
846
847 OutputMapper output(buffer, m);
848
849 // Sizes of the blocks to load in cache. See the Goto paper for details.
850 internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar,
852 blocking(k_slice, m, n, num_threads);
853 const Index kc = blocking.kc();
854 const Index mc = numext::mini(m, blocking.mc());
855 const Index nc = numext::mini(n, blocking.nc());
856
857 typedef typename TensorContractionKernel::LhsBlock LhsBlock;
858 typedef typename TensorContractionKernel::RhsBlock RhsBlock;
859
860 LhsBlock blockA;
861 RhsBlock blockB;
862
863 TensorContractionKernel kernel(m, k_slice, n, mc, kc, nc);
864
865 typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle;
866 const BlockMemHandle packed_mem =
867 kernel.allocate(this->m_device, &blockA, &blockB);
868
869 // If a contraction kernel does not support beta, explicitly initialize
870 // output buffer with zeroes.
871 if (!TensorContractionKernel::HasBeta) {
872 this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
873 }
874
875 for(Index i2=0; i2<m; i2+=mc)
876 {
877 const Index actual_mc = numext::mini(i2+mc,m)-i2;
878 for (Index k2 = k_start; k2 < k_end; k2 += kc) {
879 // make sure we don't overshoot right edge of left matrix, then pack vertical panel
880 const Index actual_kc = numext::mini(k2 + kc, k_end) - k2;
881 kernel.packLhs(&blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
882
883 // If kernel supports beta, there is no need to initialize output
884 // buffer with zeroes.
885 const Scalar alpha = Scalar(1);
886 const Scalar beta = (TensorContractionKernel::HasBeta && k2 == k_start)
887 ? Scalar(0)
888 : Scalar(1);
889
890 // series of horizontal blocks
891 for (Index j2 = 0; j2 < n; j2 += nc) {
892 // make sure we don't overshoot right edge of right matrix, then pack block
893 const Index actual_nc = numext::mini(j2 + nc, n) - j2;
894 kernel.packRhs(&blockB, rhs.getSubMapper(k2, j2), actual_kc,
895 actual_nc);
896
897 // call gebp (matrix kernel)
898 // The parameters here are copied from Eigen's GEMM implementation
899 const OutputMapper output_mapper = output.getSubMapper(i2, j2);
900 kernel.invoke(output_mapper, blockA, blockB, actual_mc, actual_kc,
901 actual_nc, alpha, beta);
902
903 // We are done with this [i2, j2] output block.
904 if (use_output_kernel && k2 + kc >= k_end) {
905 m_output_kernel(output_mapper, m_tensor_contraction_params, i2, j2,
906 actual_mc, actual_nc);
907 }
908 }
909 }
910 }
911
912 kernel.deallocate(this->m_device, packed_mem);
913 }
914
918
919 if (m_result != NULL) {
920 m_device.deallocate(m_result);
921 m_result = NULL;
922 }
923 }
924
928
932
933 template<int LoadMode>
937
939
940protected:
942
946
950
955
959
961
967};
968
969
970// evaluator for default device
971template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType, typename Device>
974 TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> > {
977
980 typedef typename XprType::Index Index;
983
984 enum {
986 };
987
988 // Most of the code is assuming that both input tensors are ColMajor. If the
989 // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
990 // If we want to compute A * B = C, where A is LHS and B is RHS, the code
991 // will pretend B is LHS and A is RHS.
992 typedef typename internal::conditional<
993 static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
994 typedef typename internal::conditional<
995 static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
996
997 static const int LDims =
999 static const int RDims =
1001 static const int ContractDims = internal::array_size<Indices>::value;
1002
1004 typedef array<Index, LDims - ContractDims> left_nocontract_t;
1005 typedef array<Index, RDims - ContractDims> right_nocontract_t;
1006
1007 static const int NumDims = LDims + RDims - 2 * ContractDims;
1008
1009 // Could we use NumDimensions here?
1011
1012 TensorEvaluator(const XprType& op, const Device& device) :
1013 Base(op, device) { }
1014
1015 template <int Alignment>
1016 void evalProduct(Scalar* buffer) const {
1017 TENSOR_CONTRACTION_DISPATCH(this->template evalProductSequential, Alignment, (buffer));
1018 }
1019};
1020
1021} // end namespace Eigen
1022
1023#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
Matrix3f m
Definition AngleAxis_mimic_euler.cpp:1
int n
Definition BiCGSTAB_simple.cpp:1
int i
Definition BiCGSTAB_step_by_step.cpp:9
#define EIGEN_MAX_ALIGN_BYTES
Definition ConfigureVectorization.h:175
#define EIGEN_ALWAYS_INLINE
Definition Macros.h:932
#define EIGEN_UNUSED_VARIABLE(var)
Definition Macros.h:1076
#define EIGEN_DEVICE_FUNC
Definition Macros.h:976
#define EIGEN_DONT_INLINE
Definition Macros.h:940
#define eigen_assert(x)
Definition Macros.h:1037
#define EIGEN_STRONG_INLINE
Definition Macros.h:917
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition StaticAssert.h:127
#define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS)
Definition TensorContraction.h:637
#define EIGEN_DEVICE_REF
Definition TensorMacros.h:50
int rows
Definition Tutorial_commainit_02.cpp:1
int cols
Definition Tutorial_commainit_02.cpp:1
Scalar Scalar int size
Definition benchVecAdd.cpp:17
SCALAR Scalar
Definition bench_gemm.cpp:46
The tensor base class.
Definition TensorBase.h:973
Definition TensorContraction.h:326
EIGEN_DEVICE_FUNC const OutputKernelType & outputKernel() const
Definition TensorContraction.h:354
const OutputKernelType m_output_kernel
Definition TensorContraction.h:360
Eigen::internal::traits< TensorContractionOp >::Index Index
Definition TensorContraction.h:333
Eigen::internal::nested< TensorContractionOp >::type Nested
Definition TensorContraction.h:331
EIGEN_DEVICE_FUNC const internal::remove_all< typenameRhsXprType::Nested >::type & rhsExpression() const
Definition TensorContraction.h:351
Eigen::internal::traits< TensorContractionOp >::StorageKind StorageKind
Definition TensorContraction.h:332
EIGEN_DEVICE_FUNC const internal::remove_all< typenameLhsXprType::Nested >::type & lhsExpression() const
Definition TensorContraction.h:347
EIGEN_DEVICE_FUNC const Indices & indices() const
Definition TensorContraction.h:342
Eigen::internal::traits< TensorContractionOp >::Scalar Scalar
Definition TensorContraction.h:328
const Indices m_indices
Definition TensorContraction.h:359
LhsXprType::Nested m_lhs_xpr
Definition TensorContraction.h:357
RhsXprType::Nested m_rhs_xpr
Definition TensorContraction.h:358
internal::gebp_traits< typenameLhsXprType::CoeffReturnType, typenameRhsXprType::CoeffReturnType >::ResScalar CoeffReturnType
Definition TensorContraction.h:330
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionOp(const LhsXprType &lhs, const RhsXprType &rhs, const Indices &dims, const OutputKernelType &output_kernel=OutputKernelType())
Definition TensorContraction.h:335
Definition TensorCostModel.h:25
Definition EmulateArray.h:21
EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE std::size_t size()
Definition EmulateArray.h:44
Definition TensorBlock.h:617
Definition TensorContractionBlocking.h:25
Definition TensorContractionMapper.h:525
Definition GeneralBlockPanelKernel.h:419
Definition XprHelper.h:110
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition gnuplot_common_settings.hh:12
@ Unaligned
Definition Constants.h:233
@ Aligned
Definition Constants.h:240
@ ColMajor
Definition Constants.h:319
@ RowMajor
Definition Constants.h:321
return int(ret)+1
RealScalar alpha
Definition level1_cplx_impl.h:147
DenseIndex ret
Definition level1_cplx_impl.h:44
@ ShardByCol
Definition TensorContractionBlocking.h:19
@ Lhs
Definition TensorContractionMapper.h:19
@ Rhs
Definition TensorContractionMapper.h:18
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Definition MathFunctions.h:1091
EIGEN_STRONG_INLINE void swap(T &a, T &b)
Definition Meta.h:766
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T &x, const T &y)
Definition MathFunctions.h:1083
Namespace containing all symbols from the Eigen library.
Definition bench_norm.cpp:85
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const T1 & choose(Cond< true >, const T1 &first, const T2 &)
Definition TensorMeta.h:18
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:74
Definition BandTriangularSolver.h:13
real function second()
SECOND returns nothing
Definition second_NONE.f:39
Definition TensorMeta.h:15
Definition TensorDimensions.h:263
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex TotalSize() const
Definition TensorDimensions.h:271
Definition Constants.h:507
Definition TensorContraction.h:294
EIGEN_ALWAYS_INLINE void operator()(const internal::blas_data_mapper< Scalar, Index, ColMajor > &output_mapper, const TensorContractionParams &params, Index i, Index j, Index num_rows, Index num_cols) const
Definition TensorContraction.h:311
Definition TensorMeta.h:50
Definition TensorForwardDeclarations.h:37
Definition TensorContraction.h:366
XprType::CoeffReturnType CoeffReturnType
Definition TensorContraction.h:376
static const int LDims
Definition TensorContraction.h:407
TensorEvaluator< EvalRightArgType, Device > RightEvaluatorType
Definition TensorContraction.h:405
EIGEN_STRONG_INLINE void cleanup()
Definition TensorContraction.h:915
Index m_i_size
Definition TensorContraction.h:956
DSizes< Index, NumDims > Dimensions
Definition TensorContraction.h:418
EIGEN_STRONG_INLINE TensorContractionEvaluatorBase(const XprType &op, const Device &device)
Definition TensorContraction.h:421
StorageMemory< Scalar, Device > Storage
Definition TensorContraction.h:378
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
Definition TensorContraction.h:934
right_nocontract_t m_j_strides
Definition TensorContraction.h:952
internal::traits< Derived >::Device Device
Definition TensorContraction.h:371
right_nocontract_t m_right_nocontract_strides
Definition TensorContraction.h:954
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions & dimensions() const
Definition TensorContraction.h:603
PacketType< CoeffReturnType, Device >::type PacketReturnType
Definition TensorContraction.h:377
internal::traits< Derived >::LeftArgType LeftArgType
Definition TensorContraction.h:368
contract_t m_right_contracting_strides
Definition TensorContraction.h:945
const Device EIGEN_DEVICE_REF m_device
Definition TensorContraction.h:964
array< Index, RDims - ContractDims > right_nocontract_t
Definition TensorContraction.h:416
internal::conditional< static_cast< int >(Layout)==static_cast< int >(ColMajor), LeftArgType, RightArgType >::type EvalLeftArgType
Definition TensorContraction.h:400
TensorEvaluator< EvalLeftArgType, Device > LeftEvaluatorType
Definition TensorContraction.h:404
left_nocontract_t m_left_nocontract_strides
Definition TensorContraction.h:953
EvaluatorPointerType m_result
Definition TensorContraction.h:966
EIGEN_DEVICE_FUNC void evalGemv(Scalar *buffer) const
Definition TensorContraction.h:732
XprType::Index Index
Definition TensorContraction.h:375
Storage::Type EvaluatorPointerType
Definition TensorContraction.h:379
bool m_rhs_inner_dim_reordered
Definition TensorContraction.h:949
internal::traits< Derived >::RightArgType RightArgType
Definition TensorContraction.h:369
bool m_rhs_inner_dim_contiguous
Definition TensorContraction.h:948
EIGEN_DEVICE_FUNC void evalGemmPartial(Scalar *buffer, Index k_start, Index k_end, int num_threads) const
Definition TensorContraction.h:801
contract_t m_left_contracting_strides
Definition TensorContraction.h:944
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data)
Definition TensorContraction.h:605
TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType > XprType
Definition TensorContraction.h:373
EIGEN_DEVICE_FUNC void evalTo(Scalar *buffer) const
Definition TensorContraction.h:702
Index m_j_size
Definition TensorContraction.h:957
TensorEvaluator< EvalRightArgType, Device > m_rightImpl
Definition TensorContraction.h:963
internal::conditional< static_cast< int >(Layout)==static_cast< int >(ColMajor), RightArgType, LeftArgType >::type EvalRightArgType
Definition TensorContraction.h:402
static const int NumDims
Definition TensorContraction.h:412
internal::remove_const< typenameXprType::Scalar >::type Scalar
Definition TensorContraction.h:374
Index m_k_size
Definition TensorContraction.h:958
@ PreferBlockAccess
Definition TensorContraction.h:385
@ PacketAccess
Definition TensorContraction.h:383
@ RawAccess
Definition TensorContraction.h:388
@ CoordAccess
Definition TensorContraction.h:387
@ IsAligned
Definition TensorContraction.h:382
@ BlockAccess
Definition TensorContraction.h:384
@ Layout
Definition TensorContraction.h:386
internal::TensorBlockNotImplemented TensorBlock
Definition TensorContraction.h:392
void evalProductSequential(Scalar *buffer) const
Definition TensorContraction.h:717
OutputKernelType m_output_kernel
Definition TensorContraction.h:965
TensorContractionParams m_tensor_contraction_params
Definition TensorContraction.h:960
bool m_lhs_inner_dim_contiguous
Definition TensorContraction.h:947
Dimensions m_dimensions
Definition TensorContraction.h:941
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const
Definition TensorContraction.h:929
array< Index, ContractDims > contract_t
Definition TensorContraction.h:414
internal::traits< Derived >::OutputKernelType OutputKernelType
Definition TensorContraction.h:370
TensorEvaluator< EvalLeftArgType, Device > m_leftImpl
Definition TensorContraction.h:962
array< Index, LDims - ContractDims > left_nocontract_t
Definition TensorContraction.h:415
EIGEN_DEVICE_FUNC void evalGemm(Scalar *buffer) const
Definition TensorContraction.h:781
contract_t m_k_strides
Definition TensorContraction.h:943
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const
Definition TensorContraction.h:938
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
Definition TensorContraction.h:925
static const int RDims
Definition TensorContraction.h:409
EIGEN_DEVICE_FUNC void evalGemmPartialWithoutOutputKernel(Scalar *buffer, Index k_start, Index k_end, int num_threads) const
Definition TensorContraction.h:792
static const int ContractDims
Definition TensorContraction.h:411
internal::traits< Derived >::Indices Indices
Definition TensorContraction.h:367
left_nocontract_t m_i_strides
Definition TensorContraction.h:951
Definition TensorContraction.h:281
bool swapped_arguments
Definition TensorContraction.h:284
internal::conditional< static_cast< int >(Layout)==static_cast< int >(ColMajor), LeftArgType, RightArgType >::type EvalLeftArgType
Definition TensorContraction.h:993
internal::conditional< static_cast< int >(Layout)==static_cast< int >(ColMajor), RightArgType, LeftArgType >::type EvalRightArgType
Definition TensorContraction.h:995
TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType > XprType
Definition TensorContraction.h:978
PacketType< CoeffReturnType, Device >::type PacketReturnType
Definition TensorContraction.h:982
TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device > Self
Definition TensorContraction.h:975
TensorEvaluator(const XprType &op, const Device &device)
Definition TensorContraction.h:1012
internal::remove_const< typenameXprType::Scalar >::type Scalar
Definition TensorContraction.h:979
array< Index, RDims - ContractDims > right_nocontract_t
Definition TensorContraction.h:1005
A cost model used to limit the number of threads used for evaluating tensor expression.
Definition TensorEvaluator.h:29
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType dest)
Definition TensorEvaluator.h:75
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions & dimensions() const
Definition TensorEvaluator.h:73
EIGEN_STRONG_INLINE void cleanup()
Definition TensorEvaluator.h:92
@ Layout
Definition TensorEvaluator.h:50
Derived::Index Index
Definition TensorEvaluator.h:30
static EIGEN_DEVICE_FUNC BlockMemHandle allocate(Device &d, const Index bm, const Index bk, const Index bn, LhsScalar **lhs_block, RhsScalar **rhs_block)
Definition TensorContraction.h:83
static EIGEN_DEVICE_FUNC void deallocate(Device &d, BlockMemHandle handle)
Definition TensorContraction.h:131
void * BlockMemHandle
Definition TensorContraction.h:80
static EIGEN_DEVICE_FUNC BlockMemHandle allocateSlices(Device &d, const Index bm, const Index bk, const Index bn, const Index num_lhs, const Index num_rhs, const Index num_slices, std::vector< LhsScalar * > *lhs_blocks, std::vector< RhsScalar * > *rhs_blocks)
Definition TensorContraction.h:99
Definition TensorContraction.h:182
LhsScalar * LhsBlock
Definition TensorContraction.h:193
RhsScalar * RhsBlock
Definition TensorContraction.h:194
EIGEN_DEVICE_FUNC BlockMemHandle allocateSlices(Device &d, const StorageIndex num_lhs, const StorageIndex num_rhs, const StorageIndex num_slices, std::vector< LhsBlock > *lhs_blocks, std::vector< RhsBlock > *rhs_blocks)
Definition TensorContraction.h:225
EIGEN_DEVICE_FUNC TensorContractionKernel(StorageIndex m_, StorageIndex k_, StorageIndex n_, StorageIndex bm_, StorageIndex bk_, StorageIndex bn_)
Definition TensorContraction.h:188
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void packLhs(LhsBlock *lhsBlock, const typename LhsMapper::SubMapper &data_mapper, const StorageIndex depth, const StorageIndex rows)
Definition TensorContraction.h:238
internal::gebp_kernel< LhsScalar, RhsScalar, StorageIndex, OutputMapper, Traits::mr, Traits::nr, false, false > GebpKernel
Definition TensorContraction.h:216
internal::gemm_pack_lhs< LhsScalar, StorageIndex, typename LhsMapper::SubMapper, Traits::mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor > LhsPacker
Definition TensorContraction.h:206
@ HasBeta
Definition TensorContraction.h:185
internal::gemm_pack_rhs< RhsScalar, StorageIndex, typename RhsMapper::SubMapper, Traits::nr, ColMajor > RhsPacker
Definition TensorContraction.h:211
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void invoke(const OutputMapper &output_mapper, const LhsBlock &lhsBlock, const RhsBlock &rhsBlock, const StorageIndex rows, const StorageIndex depth, const StorageIndex cols, const ResScalar alpha, const ResScalar beta)
Definition TensorContraction.h:251
static EIGEN_DEVICE_FUNC void deallocate(Device &d, BlockMemHandle handle)
Definition TensorContraction.h:234
BlockMemAllocator::BlockMemHandle BlockMemHandle
Definition TensorContraction.h:199
internal::gebp_traits< LhsScalar, RhsScalar > Traits
Definition TensorContraction.h:201
EIGEN_DEVICE_FUNC BlockMemHandle allocate(Device &d, LhsBlock *lhs_block, RhsBlock *rhs_block)
Definition TensorContraction.h:219
TensorContractionBlockMemAllocator< LhsScalar, RhsScalar > BlockMemAllocator
Definition TensorContraction.h:198
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void packRhs(RhsBlock *rhsBlock, const typename RhsMapper::SubMapper &data_mapper, const StorageIndex depth, const StorageIndex cols)
Definition TensorContraction.h:245
Definition Meta.h:445
Definition Meta.h:109
const TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType > & type
Definition TensorContraction.h:56
Definition XprHelper.h:332
Definition GeneralBlockPanelKernel.h:1058
Definition BlasUtil.h:28
Definition BlasUtil.h:25
Definition TensorTraits.h:175
promote_storage_type< typenametraits< LhsXprType >::StorageKind, typenametraits< RhsXprType >::StorageKind >::ret StorageKind
Definition TensorContraction.h:32
remove_reference< LhsNested >::type _LhsNested
Definition TensorContraction.h:37
gebp_traits< typenameremove_const< typenameLhsXprType::Scalar >::type, typenameremove_const< typenameRhsXprType::Scalar >::type >::ResScalar Scalar
Definition TensorContraction.h:29
remove_reference< RhsNested >::type _RhsNested
Definition TensorContraction.h:38
conditional< Pointer_type_promotion< typenameLhsXprType::Scalar, Scalar >::val, typenametraits< LhsXprType >::PointerType, typenametraits< RhsXprType >::PointerType >::type PointerType
Definition TensorContraction.h:46
promote_index_type< typenametraits< LhsXprType >::Index, typenametraits< RhsXprType >::Index >::type Index
Definition TensorContraction.h:34
Definition ForwardDeclarations.h:17
Definition GenericPacketMath.h:133
std::ptrdiff_t j
Definition tut_arithmetic_redux_minmax.cpp:2