TR-mbed 1.0
Loading...
Searching...
No Matches
TensorImagePatch.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
11#define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
12
13namespace Eigen {
14
29namespace internal {
30
31template<DenseIndex Rows, DenseIndex Cols, typename XprType>
32struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType>
33{
36 typedef typename XprTraits::StorageKind StorageKind;
37 typedef typename XprTraits::Index Index;
38 typedef typename XprType::Nested Nested;
40 static const int NumDimensions = XprTraits::NumDimensions + 1;
41 static const int Layout = XprTraits::Layout;
42 typedef typename XprTraits::PointerType PointerType;
43};
44
45template<DenseIndex Rows, DenseIndex Cols, typename XprType>
50
51template<DenseIndex Rows, DenseIndex Cols, typename XprType>
56
57template <typename Self, bool Vectorizable>
59 typedef typename Self::Index Index;
60 typedef typename Self::Scalar Scalar;
61 typedef typename Self::Impl Impl;
63 const Self& self, const Index num_coeff_to_copy, const Index dst_index,
65 const Impl& impl = self.impl();
66 for (Index i = 0; i < num_coeff_to_copy; ++i) {
67 dst_data[dst_index + i] = impl.coeff(src_index + i);
68 }
69 }
70};
71
72template <typename Self>
73struct ImagePatchCopyOp<Self, true> {
74 typedef typename Self::Index Index;
75 typedef typename Self::Scalar Scalar;
76 typedef typename Self::Impl Impl;
93};
94
95template <typename Self>
97 typedef typename Self::Index Index;
98 typedef typename Self::Scalar Scalar;
115};
116
117} // end namespace internal
118
119template<DenseIndex Rows, DenseIndex Cols, typename XprType>
120class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors>
121{
122 public:
125 typedef typename XprType::CoeffReturnType CoeffReturnType;
129
141
156
157
175 bool padding_explicit() const { return m_padding_explicit; }
188
191 expression() const { return m_xpr; }
192
193 protected:
194 typename XprType::Nested m_xpr;
210};
211
212// Eval as rvalue
213template<DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
214struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
215{
217 typedef typename XprType::Index Index;
219 static const int NumDims = NumInputDims + 1;
223 Device> Self;
230
231 enum {
232 IsAligned = false,
234 BlockAccess = false,
237 CoordAccess = false,
238 RawAccess = false
239 };
240
241 //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
243 //===--------------------------------------------------------------------===//
244
245 EIGEN_STRONG_INLINE TensorEvaluator( const XprType& op, const Device& device)
246 : m_device(device), m_impl(op.expression(), device)
247 {
248 EIGEN_STATIC_ASSERT((NumDims >= 4), YOU_MADE_A_PROGRAMMING_MISTAKE);
249
250 m_paddingValue = op.padding_value();
251
252 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
253
254 // Caches a few variables.
255 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
256 m_inputDepth = input_dims[0];
257 m_inputRows = input_dims[1];
258 m_inputCols = input_dims[2];
259 } else {
260 m_inputDepth = input_dims[NumInputDims-1];
261 m_inputRows = input_dims[NumInputDims-2];
262 m_inputCols = input_dims[NumInputDims-3];
263 }
264
265 m_row_strides = op.row_strides();
266 m_col_strides = op.col_strides();
267
268 // Input strides and effective input/patch size
269 m_in_row_strides = op.in_row_strides();
270 m_in_col_strides = op.in_col_strides();
271 m_row_inflate_strides = op.row_inflate_strides();
272 m_col_inflate_strides = op.col_inflate_strides();
273 // The "effective" input rows and input cols are the input rows and cols
274 // after inflating them with zeros.
275 // For examples, a 2x3 matrix with row_inflate_strides and
276 // col_inflate_strides of 2 comes from:
277 // A B C
278 // D E F
279 //
280 // to a matrix is 3 x 5:
281 //
282 // A . B . C
283 // . . . . .
284 // D . E . F
285
286 m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
287 m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
288 m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
289 m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
290
291 if (op.padding_explicit()) {
292 m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
293 m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
294 m_rowPaddingTop = op.padding_top();
295 m_colPaddingLeft = op.padding_left();
296 } else {
297 // Computing padding from the type
298 switch (op.padding_type()) {
299 case PADDING_VALID:
300 m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
301 m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
302 // Calculate the padding
303 m_rowPaddingTop = numext::maxi<Index>(0, ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2);
304 m_colPaddingLeft = numext::maxi<Index>(0, ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2);
305 break;
306 case PADDING_SAME:
307 m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
308 m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
309 // Calculate the padding
310 m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
311 m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
312 // The padding size calculation for PADDING_SAME has been updated to
313 // be consistent with how TensorFlow extracts its paddings.
314 m_rowPaddingTop = numext::maxi<Index>(0, m_rowPaddingTop);
315 m_colPaddingLeft = numext::maxi<Index>(0, m_colPaddingLeft);
316 break;
317 default:
318 eigen_assert(false && "unexpected padding");
319 m_outputCols=0; // silence the uninitialised warning;
320 m_outputRows=0;
321 }
322 }
323 eigen_assert(m_outputRows > 0);
324 eigen_assert(m_outputCols > 0);
325
326 // Dimensions for result of extraction.
327 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
328 // ColMajor
329 // 0: depth
330 // 1: patch_rows
331 // 2: patch_cols
332 // 3: number of patches
333 // 4 and beyond: anything else (such as batch).
334 m_dimensions[0] = input_dims[0];
335 m_dimensions[1] = op.patch_rows();
336 m_dimensions[2] = op.patch_cols();
337 m_dimensions[3] = m_outputRows * m_outputCols;
338 for (int i = 4; i < NumDims; ++i) {
339 m_dimensions[i] = input_dims[i-1];
340 }
341 } else {
342 // RowMajor
343 // NumDims-1: depth
344 // NumDims-2: patch_rows
345 // NumDims-3: patch_cols
346 // NumDims-4: number of patches
347 // NumDims-5 and beyond: anything else (such as batch).
348 m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
349 m_dimensions[NumDims-2] = op.patch_rows();
350 m_dimensions[NumDims-3] = op.patch_cols();
351 m_dimensions[NumDims-4] = m_outputRows * m_outputCols;
352 for (int i = NumDims-5; i >= 0; --i) {
353 m_dimensions[i] = input_dims[i];
354 }
355 }
356
357 // Strides for moving the patch in various dimensions.
358 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
359 m_colStride = m_dimensions[1];
360 m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0];
361 m_otherStride = m_patchStride * m_dimensions[3];
362 } else {
363 m_colStride = m_dimensions[NumDims-2];
364 m_patchStride = m_colStride * m_dimensions[NumDims-3] * m_dimensions[NumDims-1];
365 m_otherStride = m_patchStride * m_dimensions[NumDims-4];
366 }
367
368 // Strides for navigating through the input tensor.
369 m_rowInputStride = m_inputDepth;
370 m_colInputStride = m_inputDepth * m_inputRows;
371 m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols;
372
373 // Fast representations of different variables.
374 m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
375 m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
376 m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
377 m_fastInflateRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
378 m_fastInflateColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
379 m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
380
381 // Number of patches in the width dimension.
382 m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
383 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
384 m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
385 } else {
386 m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
387 }
388 }
389
390 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
391
393 m_impl.evalSubExprsIfNeeded(NULL);
394 return true;
395 }
396
397#ifdef EIGEN_USE_THREADS
398 template <typename EvalSubExprsCallback>
399 EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
400 EvaluatorPointerType, EvalSubExprsCallback done) {
401 m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
402 }
403#endif // EIGEN_USE_THREADS
404
406 m_impl.cleanup();
407 }
408
410 {
411 // Patch index corresponding to the passed in index.
412 const Index patchIndex = index / m_fastPatchStride;
413 // Find the offset of the element wrt the location of the first element.
414 const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
415
416 // Other ways to index this element.
417 const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
418 const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
419
420 // Calculate col index in the input original tensor.
421 const Index colIndex = patch2DIndex / m_fastOutputRows;
422 const Index colOffset = patchOffset / m_fastColStride;
423 const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
424 const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0);
425 if (inputCol < 0 || inputCol >= m_input_cols_eff ||
426 ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
427 return Scalar(m_paddingValue);
428 }
429
430 // Calculate row index in the original input tensor.
431 const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
432 const Index rowOffset = patchOffset - colOffset * m_colStride;
433 const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
434 const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0);
435 if (inputRow < 0 || inputRow >= m_input_rows_eff ||
436 ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
437 return Scalar(m_paddingValue);
438 }
439
440 const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
441 const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
442
443 const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride;
444 return m_impl.coeff(inputIndex);
445 }
446
447 template<int LoadMode>
449 {
450 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
451 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
452
453 if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) {
454 return packetWithPossibleZero(index);
455 }
456
457 const Index indices[2] = {index, index + PacketSize - 1};
458 const Index patchIndex = indices[0] / m_fastPatchStride;
459 if (patchIndex != indices[1] / m_fastPatchStride) {
460 return packetWithPossibleZero(index);
461 }
462 const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride;
463 eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
464
465 // Find the offset of the element wrt the location of the first element.
466 const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
467 (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
468
469 const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
470 eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
471
472 const Index colIndex = patch2DIndex / m_fastOutputRows;
473 const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
474
475 // Calculate col indices in the original input tensor.
476 const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] -
477 m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
478 if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
479 return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
480 }
481
482 if (inputCols[0] == inputCols[1]) {
483 const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
484 const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride};
485 eigen_assert(rowOffsets[0] <= rowOffsets[1]);
486 // Calculate col indices in the original input tensor.
487 const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] -
488 m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
489
490 if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
491 return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
492 }
493
494 if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
495 // no padding
496 const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
497 const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
498 const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride;
499 return m_impl.template packet<Unaligned>(inputIndex);
500 }
501 }
502
503 return packetWithPossibleZero(index);
504 }
505
507
509
510#ifdef EIGEN_USE_SYCL
511 // binding placeholder accessors to a command group handler for SYCL
512 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
513 m_impl.bind(cgh);
514 }
515#endif
516
517 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowPaddingTop() const { return m_rowPaddingTop; }
518 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colPaddingLeft() const { return m_colPaddingLeft; }
519 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputRows() const { return m_outputRows; }
520 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputCols() const { return m_outputCols; }
523 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInRowStride() const { return m_in_row_strides; }
524 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInColStride() const { return m_in_col_strides; }
525 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowInflateStride() const { return m_row_inflate_strides; }
526 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colInflateStride() const { return m_col_inflate_strides; }
527
529 costPerCoeff(bool vectorized) const {
530 // We conservatively estimate the cost for the code path where the computed
531 // index is inside the original image and
532 // TensorEvaluator<ArgType, Device>::CoordAccess is false.
533 const double compute_cost = 3 * TensorOpCost::DivCost<Index>() +
534 6 * TensorOpCost::MulCost<Index>() +
535 8 * TensorOpCost::MulCost<Index>();
536 return m_impl.costPerCoeff(vectorized) +
537 TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
538 }
539
540 protected:
542 {
545 for (int i = 0; i < PacketSize; ++i) {
546 values[i] = coeff(index+i);
547 }
549 return rslt;
550 }
551
553
559
564
569
576
580
584
587
590
593
595
598};
599
600
601} // end namespace Eigen
602
603#endif // EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
int i
Definition BiCGSTAB_step_by_step.cpp:9
#define EIGEN_ALIGN_MAX
Definition ConfigureVectorization.h:157
#define EIGEN_UNROLL_LOOP
Definition Macros.h:1461
#define EIGEN_DEVICE_FUNC
Definition Macros.h:976
#define eigen_assert(x)
Definition Macros.h:1037
#define EIGEN_STRONG_INLINE
Definition Macros.h:917
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition StaticAssert.h:127
#define EIGEN_DEVICE_REF
Definition TensorMacros.h:50
float * p
Definition Tutorial_Map_using.cpp:9
Generic expression where a coefficient-wise binary operator is applied to two expressions.
Definition CwiseBinaryOp.h:84
The tensor base class.
Definition TensorBase.h:973
Definition TensorImagePatch.h:121
EIGEN_DEVICE_FUNC DenseIndex padding_left() const
Definition TensorImagePatch.h:181
EIGEN_DEVICE_FUNC DenseIndex patch_rows() const
Definition TensorImagePatch.h:159
EIGEN_DEVICE_FUNC DenseIndex in_row_strides() const
Definition TensorImagePatch.h:167
const DenseIndex m_padding_bottom
Definition TensorImagePatch.h:205
EIGEN_DEVICE_FUNC DenseIndex in_col_strides() const
Definition TensorImagePatch.h:169
EIGEN_DEVICE_FUNC PaddingType padding_type() const
Definition TensorImagePatch.h:185
const Scalar m_padding_value
Definition TensorImagePatch.h:209
EIGEN_DEVICE_FUNC DenseIndex col_inflate_strides() const
Definition TensorImagePatch.h:173
EIGEN_DEVICE_FUNC DenseIndex col_strides() const
Definition TensorImagePatch.h:165
const DenseIndex m_in_col_strides
Definition TensorImagePatch.h:200
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType &expr, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, DenseIndex padding_top, DenseIndex padding_bottom, DenseIndex padding_left, DenseIndex padding_right, Scalar padding_value)
Definition TensorImagePatch.h:142
const DenseIndex m_row_strides
Definition TensorImagePatch.h:197
EIGEN_DEVICE_FUNC DenseIndex patch_cols() const
Definition TensorImagePatch.h:161
EIGEN_DEVICE_FUNC DenseIndex padding_top() const
Definition TensorImagePatch.h:177
const DenseIndex m_padding_right
Definition TensorImagePatch.h:207
XprType::CoeffReturnType CoeffReturnType
Definition TensorImagePatch.h:125
const DenseIndex m_padding_left
Definition TensorImagePatch.h:206
Eigen::internal::traits< TensorImagePatchOp >::Scalar Scalar
Definition TensorImagePatch.h:123
EIGEN_DEVICE_FUNC const internal::remove_all< typenameXprType::Nested >::type & expression() const
Definition TensorImagePatch.h:191
const DenseIndex m_patch_rows
Definition TensorImagePatch.h:195
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType &expr, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, PaddingType padding_type, Scalar padding_value)
Definition TensorImagePatch.h:130
EIGEN_DEVICE_FUNC bool padding_explicit() const
Definition TensorImagePatch.h:175
EIGEN_DEVICE_FUNC DenseIndex row_strides() const
Definition TensorImagePatch.h:163
EIGEN_DEVICE_FUNC DenseIndex row_inflate_strides() const
Definition TensorImagePatch.h:171
const DenseIndex m_in_row_strides
Definition TensorImagePatch.h:199
const DenseIndex m_col_strides
Definition TensorImagePatch.h:198
const DenseIndex m_row_inflate_strides
Definition TensorImagePatch.h:201
const PaddingType m_padding_type
Definition TensorImagePatch.h:208
Eigen::internal::nested< TensorImagePatchOp >::type Nested
Definition TensorImagePatch.h:126
Eigen::internal::traits< TensorImagePatchOp >::Index Index
Definition TensorImagePatch.h:128
Eigen::internal::traits< TensorImagePatchOp >::StorageKind StorageKind
Definition TensorImagePatch.h:127
XprType::Nested m_xpr
Definition TensorImagePatch.h:194
const DenseIndex m_col_inflate_strides
Definition TensorImagePatch.h:202
const DenseIndex m_padding_top
Definition TensorImagePatch.h:204
EIGEN_DEVICE_FUNC DenseIndex padding_right() const
Definition TensorImagePatch.h:183
const DenseIndex m_patch_cols
Definition TensorImagePatch.h:196
const bool m_padding_explicit
Definition TensorImagePatch.h:203
EIGEN_DEVICE_FUNC DenseIndex padding_bottom() const
Definition TensorImagePatch.h:179
Eigen::NumTraits< Scalar >::Real RealScalar
Definition TensorImagePatch.h:124
EIGEN_DEVICE_FUNC Scalar padding_value() const
Definition TensorImagePatch.h:187
Definition TensorCostModel.h:25
Definition TensorBlock.h:617
@ ColMajor
Definition Constants.h:319
EIGEN_DEVICE_FUNC T() ceil(const T &x)
Definition MathFunctions.h:1420
Namespace containing all symbols from the Eigen library.
Definition bench_norm.cpp:85
PaddingType
Definition TensorTraits.h:257
@ PADDING_VALID
Definition TensorTraits.h:258
@ PADDING_SAME
Definition TensorTraits.h:259
EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
Definition Meta.h:66
Definition BandTriangularSolver.h:13
Definition TensorDimensions.h:263
Definition Constants.h:507
Definition TensorMeta.h:50
Definition TensorForwardDeclarations.h:37
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colInflateStride() const
Definition TensorImagePatch.h:526
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
Definition TensorImagePatch.h:409
internal::TensorBlockNotImplemented TensorBlock
Definition TensorImagePatch.h:242
internal::TensorIntDivisor< Index > m_fastInflateRowStride
Definition TensorImagePatch.h:573
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userRowStride() const
Definition TensorImagePatch.h:521
internal::TensorIntDivisor< Index > m_fastPatchStride
Definition TensorImagePatch.h:571
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator< ArgType, Device > & impl() const
Definition TensorImagePatch.h:508
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputRows() const
Definition TensorImagePatch.h:519
internal::remove_const< typenameXprType::Scalar >::type Scalar
Definition TensorImagePatch.h:221
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowInflateStride() const
Definition TensorImagePatch.h:525
PacketType< CoeffReturnType, Device >::type PacketReturnType
Definition TensorImagePatch.h:226
EIGEN_STRONG_INLINE TensorEvaluator(const XprType &op, const Device &device)
Definition TensorImagePatch.h:245
TensorEvaluator< ArgType, Device > Impl
Definition TensorImagePatch.h:224
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colPaddingLeft() const
Definition TensorImagePatch.h:518
XprType::CoeffReturnType CoeffReturnType
Definition TensorImagePatch.h:225
internal::TensorIntDivisor< Index > m_fastOtherStride
Definition TensorImagePatch.h:570
internal::TensorIntDivisor< Index > m_fastOutputRows
Definition TensorImagePatch.h:591
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
Definition TensorImagePatch.h:541
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowPaddingTop() const
Definition TensorImagePatch.h:517
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userColStride() const
Definition TensorImagePatch.h:522
internal::TensorIntDivisor< Index > m_fastInputColsEff
Definition TensorImagePatch.h:575
DSizes< Index, NumDims > Dimensions
Definition TensorImagePatch.h:220
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType)
Definition TensorImagePatch.h:392
internal::TensorIntDivisor< Index > m_fastInflateColStride
Definition TensorImagePatch.h:574
EIGEN_STRONG_INLINE void cleanup()
Definition TensorImagePatch.h:405
TensorImagePatchOp< Rows, Cols, ArgType > XprType
Definition TensorImagePatch.h:216
EIGEN_DEVICE_FUNC EvaluatorPointerType data() const
Definition TensorImagePatch.h:506
const Device EIGEN_DEVICE_REF m_device
Definition TensorImagePatch.h:596
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputCols() const
Definition TensorImagePatch.h:520
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
Definition TensorImagePatch.h:448
TensorEvaluator< const TensorImagePatchOp< Rows, Cols, ArgType >, Device > Self
Definition TensorImagePatch.h:223
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions & dimensions() const
Definition TensorImagePatch.h:390
StorageMemory< CoeffReturnType, Device > Storage
Definition TensorImagePatch.h:228
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInRowStride() const
Definition TensorImagePatch.h:523
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const
Definition TensorImagePatch.h:529
TensorEvaluator< ArgType, Device > m_impl
Definition TensorImagePatch.h:597
internal::TensorIntDivisor< Index > m_fastOutputDepth
Definition TensorImagePatch.h:592
internal::TensorIntDivisor< Index > m_fastColStride
Definition TensorImagePatch.h:572
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInColStride() const
Definition TensorImagePatch.h:524
A cost model used to limit the number of threads used for evaluating tensor expression.
Definition TensorEvaluator.h:29
Derived::Scalar Scalar
Definition TensorEvaluator.h:31
const Device EIGEN_DEVICE_REF m_device
Definition TensorEvaluator.h:192
Storage::Type EvaluatorPointerType
Definition TensorEvaluator.h:39
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions & dimensions() const
Definition TensorEvaluator.h:73
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
Definition TensorEvaluator.h:94
@ BlockAccess
Definition TensorEvaluator.h:48
@ PreferBlockAccess
Definition TensorEvaluator.h:49
@ PacketAccess
Definition TensorEvaluator.h:47
@ Layout
Definition TensorEvaluator.h:50
@ IsAligned
Definition TensorEvaluator.h:46
Derived::Dimensions Dimensions
Definition TensorEvaluator.h:34
static const int PacketSize
Definition TensorEvaluator.h:36
Self::Impl Impl
Definition TensorImagePatch.h:76
packet_traits< Scalar >::type Packet
Definition TensorImagePatch.h:77
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(const Self &self, const Index num_coeff_to_copy, const Index dst_index, Scalar *dst_data, const Index src_index)
Definition TensorImagePatch.h:78
Self::Scalar Scalar
Definition TensorImagePatch.h:75
Self::Index Index
Definition TensorImagePatch.h:74
Definition TensorImagePatch.h:58
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(const Self &self, const Index num_coeff_to_copy, const Index dst_index, Scalar *dst_data, const Index src_index)
Definition TensorImagePatch.h:62
Self::Scalar Scalar
Definition TensorImagePatch.h:60
Self::Index Index
Definition TensorImagePatch.h:59
Self::Impl Impl
Definition TensorImagePatch.h:61
Definition TensorImagePatch.h:96
Self::Index Index
Definition TensorImagePatch.h:97
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(const Index num_coeff_to_pad, const Scalar padding_value, const Index dst_index, Scalar *dst_data)
Definition TensorImagePatch.h:100
Self::Scalar Scalar
Definition TensorImagePatch.h:98
packet_traits< Scalar >::type Packet
Definition TensorImagePatch.h:99
const TensorImagePatchOp< Rows, Cols, XprType > & type
Definition TensorImagePatch.h:48
Definition XprHelper.h:332
Definition TensorTraits.h:175
XprTraits::StorageKind StorageKind
Definition TensorImagePatch.h:36
XprType::Nested Nested
Definition TensorImagePatch.h:38
XprTraits::Index Index
Definition TensorImagePatch.h:37
traits< XprType > XprTraits
Definition TensorImagePatch.h:35
XprTraits::PointerType PointerType
Definition TensorImagePatch.h:42
remove_reference< Nested >::type _Nested
Definition TensorImagePatch.h:39
internal::remove_const< typenameXprType::Scalar >::type Scalar
Definition TensorImagePatch.h:34
Definition ForwardDeclarations.h:17
Definition GenericPacketMath.h:133