By default, Eigen currently supports standard floating-point types (float, double, std::complex<float>, std::complex<double>, long double), as well as all native integer types (e.g., int, unsigned int, short, etc.), and bool. On x86-64 systems, long double permits to locally enforces the use of x87 registers with extended accuracy (in comparison to SSE).
In order to add support for a custom type T you need:
- make sure the common operator (+,-,*,/,etc.) are supported by the type
T
- add a specialization of struct Eigen::NumTraits<T> (see NumTraits)
- define the math functions that makes sense for your type. This includes standard ones like sqrt, pow, sin, tan, conj, real, imag, etc, as well as abs2 which is Eigen specific. (see the file Eigen/src/Core/MathFunctions.h)
The math function should be defined in the same namespace than T, or in the std namespace though that second approach is not recommended.
Here is a concrete example adding support for the Adolc's adouble type. Adolc is an automatic differentiation library. The type adouble is basically a real value tracking the values of any number of partial derivatives.
#ifndef ADOLCSUPPORT_H
#define ADOLCSUPPORT_H
#define ADOLC_TAPELESS
#include <adolc/adouble.h>
#include <Eigen/Core>
template<> struct NumTraits<adtl::adouble>
: NumTraits<double>
{
typedef adtl::adouble
Real;
typedef adtl::adouble NonInteger;
typedef adtl::adouble Nested;
enum {
};
};
}
namespace adtl {
inline const adouble&
conj(
const adouble&
x) {
return x; }
inline const adouble&
real(
const adouble&
x) {
return x; }
inline adouble
imag(
const adouble&) {
return 0.; }
inline adouble
abs(
const adouble&
x) {
return fabs(
x); }
inline adouble
abs2(
const adouble&
x) {
return x*
x; }
}
#endif
AnnoyingScalar conj(const AnnoyingScalar &x)
Definition AnnoyingScalar.h:104
#define abs(x)
Definition datatypes.h:17
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition gnuplot_common_settings.hh:12
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition MathFunctions.h:1292
Namespace containing all symbols from the Eigen library.
Definition bench_norm.cpp:85
Real fabs(const Real &a)
Definition boostmultiprec.cpp:119
T Real
Definition NumTraits.h:164
@ RequireInitialization
Definition NumTraits.h:158
@ IsSigned
Definition NumTraits.h:156
@ ReadCost
Definition NumTraits.h:159
@ AddCost
Definition NumTraits.h:160
@ IsInteger
Definition NumTraits.h:155
@ IsComplex
Definition NumTraits.h:157
@ MulCost
Definition NumTraits.h:161
This other example adds support for the mpq_class type from GMP. It shows in particular how to change the way Eigen picks the best pivot during LU factorization. It selects the coefficient with the highest score, where the score is by default the absolute value of a number, but we can define a different score, for instance to prefer pivots with a more compact representation (this is an example, not a recommendation). Note that the scores should always be non-negative and only zero is allowed to have a score of zero. Also, this can interact badly with thresholds for inexact scalar types.
#include <gmpxx.h>
#include <Eigen/Core>
#include <boost/operators.hpp>
template<> struct NumTraits<mpq_class> : GenericNumTraits<mpq_class>
{
typedef mpq_class NonInteger;
typedef mpq_class Nested;
static inline Real epsilon() {
return 0; }
static inline Real dummy_precision() {
return 0; }
static inline int digits10() { return 0; }
enum {
};
};
template<> struct scalar_score_coeff_op<mpq_class> {
struct result_type : boost::totally_ordered1<result_type> {
std::size_t len;
len(mpz_size(
q.get_num_mpz_t())+
mpz_size(
q.get_den_mpz_t())-1) {}
if (
x.len == 0)
return y.len > 0;
if (
y.len == 0)
return false;
}
}
};
};
}
}
int i
Definition BiCGSTAB_step_by_step.cpp:9
mp::number< mp::cpp_dec_float< 100 >, mp::et_on > Real
Definition boostmultiprec.cpp:78
const Scalar & y
Definition MathFunctions.h:821
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool operator<(const TensorUInt128< HL, LL > &lhs, const TensorUInt128< HR, LR > &rhs)
Definition TensorUInt128.h:103
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool operator==(const TensorUInt128< HL, LL > &lhs, const TensorUInt128< HR, LR > &rhs)
Definition TensorUInt128.h:79
EIGEN_DEVICE_FUNC const Scalar & q
Definition SpecialFunctionsImpl.h:1984
Definition BandTriangularSolver.h:13
NumTraits< Scalar >::Real result_type
Definition UnaryFunctors.h:43
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator()(const Scalar &a) const
Definition UnaryFunctors.h:44