|
TR-mbed 1.0
|
Functions/Subroutines | |
| subroutine | dlarfb (side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork) |
| DLARFB | |
| subroutine dlarfb | ( | character | side, |
| character | trans, | ||
| character | direct, | ||
| character | storev, | ||
| integer | m, | ||
| integer | n, | ||
| integer | k, | ||
| double precision, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| double precision, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| double precision, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| double precision, dimension( ldwork, * ) | work, | ||
| integer | ldwork | ||
| ) |
DLARFB
Download DLARFB + dependencies [TGZ] [ZIP] [TXT]
DLARFB applies a real block reflector H or its transpose H**T to a real m by n matrix C, from either the left or the right.
| [in] | SIDE | SIDE is CHARACTER*1
= 'L': apply H or H**T from the Left
= 'R': apply H or H**T from the Right |
| [in] | TRANS | TRANS is CHARACTER*1
= 'N': apply H (No transpose)
= 'T': apply H**T (Transpose) |
| [in] | DIRECT | DIRECT is CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward) |
| [in] | STOREV | STOREV is CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columnwise
= 'R': Rowwise |
| [in] | M | M is INTEGER
The number of rows of the matrix C. |
| [in] | N | N is INTEGER
The number of columns of the matrix C. |
| [in] | K | K is INTEGER
The order of the matrix T (= the number of elementary
reflectors whose product defines the block reflector). |
| [in] | V | V is DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C'
(LDV,M) if STOREV = 'R' and SIDE = 'L'
(LDV,N) if STOREV = 'R' and SIDE = 'R'
The matrix V. See Further Details. |
| [in] | LDV | LDV is INTEGER
The leading dimension of the array V.
If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
if STOREV = 'R', LDV >= K. |
| [in] | T | T is DOUBLE PRECISION array, dimension (LDT,K)
The triangular k by k matrix T in the representation of the
block reflector. |
| [in] | LDT | LDT is INTEGER
The leading dimension of the array T. LDT >= K. |
| [in,out] | C | C is DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T. |
| [in] | LDC | LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M). |
| [out] | WORK | WORK is DOUBLE PRECISION array, dimension (LDWORK,K) |
| [in] | LDWORK | LDWORK is INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= max(1,N);
if SIDE = 'R', LDWORK >= max(1,M). |
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )