TR-mbed 1.0
Loading...
Searching...
No Matches
sparse_solver.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "sparse.h"
11#include <Eigen/SparseCore>
12#include <Eigen/SparseLU>
13#include <sstream>
14
15template<typename Solver, typename Rhs, typename Guess,typename Result>
16void solve_with_guess(IterativeSolverBase<Solver>& solver, const MatrixBase<Rhs>& b, const Guess& g, Result &x) {
17 if(internal::random<bool>())
18 {
19 // With a temporary through evaluator<SolveWithGuess>
20 x = solver.derived().solveWithGuess(b,g) + Result::Zero(x.rows(), x.cols());
21 }
22 else
23 {
24 // direct evaluation within x through Assignment<Result,SolveWithGuess>
25 x = solver.derived().solveWithGuess(b.derived(),g);
26 }
27}
28
29template<typename Solver, typename Rhs, typename Guess,typename Result>
30void solve_with_guess(SparseSolverBase<Solver>& solver, const MatrixBase<Rhs>& b, const Guess& , Result& x) {
31 if(internal::random<bool>())
32 x = solver.derived().solve(b) + Result::Zero(x.rows(), x.cols());
33 else
34 x = solver.derived().solve(b);
35}
36
37template<typename Solver, typename Rhs, typename Guess,typename Result>
39 x = solver.derived().solve(b);
40}
41
42template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
43void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
44{
45 typedef typename Solver::MatrixType Mat;
46 typedef typename Mat::Scalar Scalar;
47 typedef typename Mat::StorageIndex StorageIndex;
48
49 DenseRhs refX = dA.householderQr().solve(db);
50 {
51 Rhs x(A.cols(), b.cols());
52 Rhs oldb = b;
53
54 solver.compute(A);
55 if (solver.info() != Success)
56 {
57 std::cerr << "ERROR | sparse solver testing, factorization failed (" << typeid(Solver).name() << ")\n";
58 VERIFY(solver.info() == Success);
59 }
60 x = solver.solve(b);
61 if (solver.info() != Success)
62 {
63 std::cerr << "WARNING: sparse solver testing: solving failed (" << typeid(Solver).name() << ")\n";
64 // dump call stack:
65 g_test_level++;
66 VERIFY(solver.info() == Success);
67 g_test_level--;
68 return;
69 }
70 VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
71 VERIFY(x.isApprox(refX,test_precision<Scalar>()));
72
73 x.setZero();
75 VERIFY(solver.info() == Success && "solving failed when using solve_with_guess API");
76 VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
77 VERIFY(x.isApprox(refX,test_precision<Scalar>()));
78
79 x.setZero();
80 // test the analyze/factorize API
81 solver.analyzePattern(A);
82 solver.factorize(A);
83 VERIFY(solver.info() == Success && "factorization failed when using analyzePattern/factorize API");
84 x = solver.solve(b);
85 VERIFY(solver.info() == Success && "solving failed when using analyzePattern/factorize API");
86 VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
87 VERIFY(x.isApprox(refX,test_precision<Scalar>()));
88
89 x.setZero();
90 // test with Map
91 MappedSparseMatrix<Scalar,Mat::Options,StorageIndex> Am(A.rows(), A.cols(), A.nonZeros(), const_cast<StorageIndex*>(A.outerIndexPtr()), const_cast<StorageIndex*>(A.innerIndexPtr()), const_cast<Scalar*>(A.valuePtr()));
92 solver.compute(Am);
93 VERIFY(solver.info() == Success && "factorization failed when using Map");
94 DenseRhs dx(refX);
95 dx.setZero();
96 Map<DenseRhs> xm(dx.data(), dx.rows(), dx.cols());
97 Map<const DenseRhs> bm(db.data(), db.rows(), db.cols());
98 xm = solver.solve(bm);
99 VERIFY(solver.info() == Success && "solving failed when using Map");
100 VERIFY(oldb.isApprox(bm) && "sparse solver testing: the rhs should not be modified!");
101 VERIFY(xm.isApprox(refX,test_precision<Scalar>()));
102 }
103
104 // if not too large, do some extra check:
105 if(A.rows()<2000)
106 {
107 // test initialization ctor
108 {
109 Rhs x(b.rows(), b.cols());
110 Solver solver2(A);
111 VERIFY(solver2.info() == Success);
112 x = solver2.solve(b);
113 VERIFY(x.isApprox(refX,test_precision<Scalar>()));
114 }
115
116 // test dense Block as the result and rhs:
117 {
118 DenseRhs x(refX.rows(), refX.cols());
119 DenseRhs oldb(db);
120 x.setZero();
121 x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols()));
122 VERIFY(oldb.isApprox(db) && "sparse solver testing: the rhs should not be modified!");
123 VERIFY(x.isApprox(refX,test_precision<Scalar>()));
124 }
125
126 // test uncompressed inputs
127 {
128 Mat A2 = A;
129 A2.reserve((ArrayXf::Random(A.outerSize())+2).template cast<typename Mat::StorageIndex>().eval());
130 solver.compute(A2);
131 Rhs x = solver.solve(b);
132 VERIFY(x.isApprox(refX,test_precision<Scalar>()));
133 }
134
135 // test expression as input
136 {
137 solver.compute(0.5*(A+A));
138 Rhs x = solver.solve(b);
139 VERIFY(x.isApprox(refX,test_precision<Scalar>()));
140
141 Solver solver2(0.5*(A+A));
142 Rhs x2 = solver2.solve(b);
143 VERIFY(x2.isApprox(refX,test_precision<Scalar>()));
144 }
145 }
146}
147
148// specialization of generic check_sparse_solving for SuperLU in order to also test adjoint and transpose solves
149template<typename Scalar, typename Rhs, typename DenseMat, typename DenseRhs>
150void check_sparse_solving(Eigen::SparseLU<Eigen::SparseMatrix<Scalar> >& solver, const typename Eigen::SparseMatrix<Scalar>& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
151{
152 typedef typename Eigen::SparseMatrix<Scalar> Mat;
153 typedef typename Mat::StorageIndex StorageIndex;
154 typedef typename Eigen::SparseLU<Eigen::SparseMatrix<Scalar> > Solver;
155
156 // reference solutions computed by dense QR solver
157 DenseRhs refX1 = dA.householderQr().solve(db); // solution of A x = db
158 DenseRhs refX2 = dA.transpose().householderQr().solve(db); // solution of A^T * x = db (use transposed matrix A^T)
159 DenseRhs refX3 = dA.adjoint().householderQr().solve(db); // solution of A^* * x = db (use adjoint matrix A^*)
160
161
162 {
163 Rhs x1(A.cols(), b.cols());
164 Rhs x2(A.cols(), b.cols());
165 Rhs x3(A.cols(), b.cols());
166 Rhs oldb = b;
167
168 solver.compute(A);
169 if (solver.info() != Success)
170 {
171 std::cerr << "ERROR | sparse solver testing, factorization failed (" << typeid(Solver).name() << ")\n";
172 VERIFY(solver.info() == Success);
173 }
174 x1 = solver.solve(b);
175 if (solver.info() != Success)
176 {
177 std::cerr << "WARNING | sparse solver testing: solving failed (" << typeid(Solver).name() << ")\n";
178 return;
179 }
180 VERIFY(oldb.isApprox(b,0.0) && "sparse solver testing: the rhs should not be modified!");
181 VERIFY(x1.isApprox(refX1,test_precision<Scalar>()));
182
183 // test solve with transposed
184 x2 = solver.transpose().solve(b);
185 VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
186 VERIFY(x2.isApprox(refX2,test_precision<Scalar>()));
187
188
189 // test solve with adjoint
190 //solver.template _solve_impl_transposed<true>(b, x3);
191 x3 = solver.adjoint().solve(b);
192 VERIFY(oldb.isApprox(b,0.0) && "sparse solver testing: the rhs should not be modified!");
193 VERIFY(x3.isApprox(refX3,test_precision<Scalar>()));
194
195 x1.setZero();
196 solve_with_guess(solver, b, x1, x1);
197 VERIFY(solver.info() == Success && "solving failed when using analyzePattern/factorize API");
198 VERIFY(oldb.isApprox(b,0.0) && "sparse solver testing: the rhs should not be modified!");
199 VERIFY(x1.isApprox(refX1,test_precision<Scalar>()));
200
201 x1.setZero();
202 x2.setZero();
203 x3.setZero();
204 // test the analyze/factorize API
205 solver.analyzePattern(A);
206 solver.factorize(A);
207 VERIFY(solver.info() == Success && "factorization failed when using analyzePattern/factorize API");
208 x1 = solver.solve(b);
209 x2 = solver.transpose().solve(b);
210 x3 = solver.adjoint().solve(b);
211
212 VERIFY(solver.info() == Success && "solving failed when using analyzePattern/factorize API");
213 VERIFY(oldb.isApprox(b,0.0) && "sparse solver testing: the rhs should not be modified!");
214 VERIFY(x1.isApprox(refX1,test_precision<Scalar>()));
215 VERIFY(x2.isApprox(refX2,test_precision<Scalar>()));
216 VERIFY(x3.isApprox(refX3,test_precision<Scalar>()));
217
218 x1.setZero();
219 // test with Map
220 MappedSparseMatrix<Scalar,Mat::Options,StorageIndex> Am(A.rows(), A.cols(), A.nonZeros(), const_cast<StorageIndex*>(A.outerIndexPtr()), const_cast<StorageIndex*>(A.innerIndexPtr()), const_cast<Scalar*>(A.valuePtr()));
221 solver.compute(Am);
222 VERIFY(solver.info() == Success && "factorization failed when using Map");
223 DenseRhs dx(refX1);
224 dx.setZero();
225 Map<DenseRhs> xm(dx.data(), dx.rows(), dx.cols());
226 Map<const DenseRhs> bm(db.data(), db.rows(), db.cols());
227 xm = solver.solve(bm);
228 VERIFY(solver.info() == Success && "solving failed when using Map");
229 VERIFY(oldb.isApprox(bm,0.0) && "sparse solver testing: the rhs should not be modified!");
230 VERIFY(xm.isApprox(refX1,test_precision<Scalar>()));
231 }
232
233 // if not too large, do some extra check:
234 if(A.rows()<2000)
235 {
236 // test initialization ctor
237 {
238 Rhs x(b.rows(), b.cols());
239 Solver solver2(A);
240 VERIFY(solver2.info() == Success);
241 x = solver2.solve(b);
242 VERIFY(x.isApprox(refX1,test_precision<Scalar>()));
243 }
244
245 // test dense Block as the result and rhs:
246 {
247 DenseRhs x(refX1.rows(), refX1.cols());
248 DenseRhs oldb(db);
249 x.setZero();
250 x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols()));
251 VERIFY(oldb.isApprox(db,0.0) && "sparse solver testing: the rhs should not be modified!");
252 VERIFY(x.isApprox(refX1,test_precision<Scalar>()));
253 }
254
255 // test uncompressed inputs
256 {
257 Mat A2 = A;
258 A2.reserve((ArrayXf::Random(A.outerSize())+2).template cast<typename Mat::StorageIndex>().eval());
259 solver.compute(A2);
260 Rhs x = solver.solve(b);
261 VERIFY(x.isApprox(refX1,test_precision<Scalar>()));
262 }
263
264 // test expression as input
265 {
266 solver.compute(0.5*(A+A));
267 Rhs x = solver.solve(b);
268 VERIFY(x.isApprox(refX1,test_precision<Scalar>()));
269
270 Solver solver2(0.5*(A+A));
271 Rhs x2 = solver2.solve(b);
272 VERIFY(x2.isApprox(refX1,test_precision<Scalar>()));
273 }
274 }
275}
276
277
278template<typename Solver, typename Rhs>
279void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const typename Solver::MatrixType& fullA, const Rhs& refX)
280{
281 typedef typename Solver::MatrixType Mat;
282 typedef typename Mat::Scalar Scalar;
283 typedef typename Mat::RealScalar RealScalar;
284
285 Rhs x(A.cols(), b.cols());
286
287 solver.compute(A);
288 if (solver.info() != Success)
289 {
290 std::cerr << "ERROR | sparse solver testing, factorization failed (" << typeid(Solver).name() << ")\n";
291 VERIFY(solver.info() == Success);
292 }
293 x = solver.solve(b);
294
295 if (solver.info() != Success)
296 {
297 std::cerr << "WARNING | sparse solver testing, solving failed (" << typeid(Solver).name() << ")\n";
298 return;
299 }
300
301 RealScalar res_error = (fullA*x-b).norm()/b.norm();
302 VERIFY( (res_error <= test_precision<Scalar>() ) && "sparse solver failed without noticing it");
303
304
305 if(refX.size() != 0 && (refX - x).norm()/refX.norm() > test_precision<Scalar>())
306 {
307 std::cerr << "WARNING | found solution is different from the provided reference one\n";
308 }
309
310}
311template<typename Solver, typename DenseMat>
312void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
313{
314 typedef typename Solver::MatrixType Mat;
315 typedef typename Mat::Scalar Scalar;
316
317 solver.compute(A);
318 if (solver.info() != Success)
319 {
320 std::cerr << "WARNING | sparse solver testing: factorization failed (check_sparse_determinant)\n";
321 return;
322 }
323
324 Scalar refDet = dA.determinant();
325 VERIFY_IS_APPROX(refDet,solver.determinant());
326}
327template<typename Solver, typename DenseMat>
328void check_sparse_abs_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
329{
330 using std::abs;
331 typedef typename Solver::MatrixType Mat;
332 typedef typename Mat::Scalar Scalar;
333
334 solver.compute(A);
335 if (solver.info() != Success)
336 {
337 std::cerr << "WARNING | sparse solver testing: factorization failed (check_sparse_abs_determinant)\n";
338 return;
339 }
340
341 Scalar refDet = abs(dA.determinant());
342 VERIFY_IS_APPROX(refDet,solver.absDeterminant());
343}
344
345template<typename Solver, typename DenseMat>
346int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
347{
348 typedef typename Solver::MatrixType Mat;
349 typedef typename Mat::Scalar Scalar;
351
352 int size = internal::random<int>(1,maxSize);
353 double density = (std::max)(8./(size*size), 0.01);
354
355 Mat M(size, size);
356 DenseMatrix dM(size, size);
357
358 initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
359
360 A = M * M.adjoint();
361 dA = dM * dM.adjoint();
362
363 halfA.resize(size,size);
364 if(Solver::UpLo==(Lower|Upper))
365 halfA = A;
366 else
367 halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
368
369 return size;
370}
371
372
373#ifdef TEST_REAL_CASES
374template<typename Scalar>
375inline std::string get_matrixfolder()
376{
377 std::string mat_folder = TEST_REAL_CASES;
378 if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
379 mat_folder = mat_folder + static_cast<std::string>("/complex/");
380 else
381 mat_folder = mat_folder + static_cast<std::string>("/real/");
382 return mat_folder;
383}
384std::string sym_to_string(int sym)
385{
386 if(sym==Symmetric) return "Symmetric ";
387 if(sym==SPD) return "SPD ";
388 return "";
389}
390template<typename Derived>
391std::string solver_stats(const IterativeSolverBase<Derived> &solver)
392{
393 std::stringstream ss;
394 ss << solver.iterations() << " iters, error: " << solver.error();
395 return ss.str();
396}
397template<typename Derived>
398std::string solver_stats(const SparseSolverBase<Derived> &/*solver*/)
399{
400 return "";
401}
402#endif
403
404template<typename Solver> void check_sparse_spd_solving(Solver& solver, int maxSize = (std::min)(300,EIGEN_TEST_MAX_SIZE), int maxRealWorldSize = 100000)
405{
406 typedef typename Solver::MatrixType Mat;
407 typedef typename Mat::Scalar Scalar;
408 typedef typename Mat::StorageIndex StorageIndex;
413
414 // generate the problem
415 Mat A, halfA;
416 DenseMatrix dA;
417 for (int i = 0; i < g_repeat; i++) {
418 int size = generate_sparse_spd_problem(solver, A, halfA, dA, maxSize);
419
420 // generate the right hand sides
421 int rhsCols = internal::random<int>(1,16);
422 double density = (std::max)(8./(size*rhsCols), 0.1);
423 SpMat B(size,rhsCols);
424 DenseVector b = DenseVector::Random(size);
425 DenseMatrix dB(size,rhsCols);
426 initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
427 SpVec c = B.col(0);
428 DenseVector dc = dB.col(0);
429
431 CALL_SUBTEST( check_sparse_solving(solver, halfA, b, dA, b) );
432 CALL_SUBTEST( check_sparse_solving(solver, A, dB, dA, dB) );
433 CALL_SUBTEST( check_sparse_solving(solver, halfA, dB, dA, dB) );
435 CALL_SUBTEST( check_sparse_solving(solver, halfA, B, dA, dB) );
437 CALL_SUBTEST( check_sparse_solving(solver, halfA, c, dA, dc) );
438
439 // check only once
440 if(i==0)
441 {
442 b = DenseVector::Zero(size);
444 }
445 }
446
447 // First, get the folder
448#ifdef TEST_REAL_CASES
449 // Test real problems with double precision only
450 if (internal::is_same<typename NumTraits<Scalar>::Real, double>::value)
451 {
452 std::string mat_folder = get_matrixfolder<Scalar>();
453 MatrixMarketIterator<Scalar> it(mat_folder);
454 for (; it; ++it)
455 {
456 if (it.sym() == SPD){
457 A = it.matrix();
458 if(A.diagonal().size() <= maxRealWorldSize)
459 {
460 DenseVector b = it.rhs();
461 DenseVector refX = it.refX();
463 halfA.resize(A.rows(), A.cols());
464 if(Solver::UpLo == (Lower|Upper))
465 halfA = A;
466 else
467 halfA.template selfadjointView<Solver::UpLo>() = A.template triangularView<Eigen::Lower>().twistedBy(pnull);
468
469 std::cout << "INFO | Testing " << sym_to_string(it.sym()) << "sparse problem " << it.matname()
470 << " (" << A.rows() << "x" << A.cols() << ") using " << typeid(Solver).name() << "..." << std::endl;
472 std::string stats = solver_stats(solver);
473 if(stats.size()>0)
474 std::cout << "INFO | " << stats << std::endl;
476 }
477 else
478 {
479 std::cout << "INFO | Skip sparse problem \"" << it.matname() << "\" (too large)" << std::endl;
480 }
481 }
482 }
483 }
484#else
485 EIGEN_UNUSED_VARIABLE(maxRealWorldSize);
486#endif
487}
488
489template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
490{
491 typedef typename Solver::MatrixType Mat;
492 typedef typename Mat::Scalar Scalar;
494
495 // generate the problem
496 Mat A, halfA;
497 DenseMatrix dA;
498 generate_sparse_spd_problem(solver, A, halfA, dA, 30);
499
500 for (int i = 0; i < g_repeat; i++) {
502 check_sparse_determinant(solver, halfA, dA );
503 }
504}
505
506template<typename Solver, typename DenseMat>
507Index generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300, int options = ForceNonZeroDiag)
508{
509 typedef typename Solver::MatrixType Mat;
510 typedef typename Mat::Scalar Scalar;
511
512 Index size = internal::random<int>(1,maxSize);
513 double density = (std::max)(8./(size*size), 0.01);
514
515 A.resize(size,size);
516 dA.resize(size,size);
517
518 initSparse<Scalar>(density, dA, A, options);
519
520 return size;
521}
522
523
527 template<class Scalar>
528 bool operator()(Index, Index col, const Scalar&) const {
529 return col != m_col;
530 }
531};
532
533
534template<typename Solver> void check_sparse_square_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000, bool checkDeficient = false)
535{
536 typedef typename Solver::MatrixType Mat;
537 typedef typename Mat::Scalar Scalar;
542
543 int rhsCols = internal::random<int>(1,16);
544
545 Mat A;
546 DenseMatrix dA;
547 for (int i = 0; i < g_repeat; i++) {
549
550 A.makeCompressed();
551 DenseVector b = DenseVector::Random(size);
552 DenseMatrix dB(size,rhsCols);
553 SpMat B(size,rhsCols);
554 double density = (std::max)(8./(size*rhsCols), 0.1);
555 initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
556 B.makeCompressed();
557 SpVec c = B.col(0);
558 DenseVector dc = dB.col(0);
563
564 // check only once
565 if(i==0)
566 {
567 CALL_SUBTEST(b = DenseVector::Zero(size); check_sparse_solving(solver, A, b, dA, b));
568 }
569 // regression test for Bug 792 (structurally rank deficient matrices):
570 if(checkDeficient && size>1) {
571 Index col = internal::random<int>(0,int(size-1));
572 A.prune(prune_column(col));
573 solver.compute(A);
575 }
576 }
577
578 // First, get the folder
579#ifdef TEST_REAL_CASES
580 // Test real problems with double precision only
581 if (internal::is_same<typename NumTraits<Scalar>::Real, double>::value)
582 {
583 std::string mat_folder = get_matrixfolder<Scalar>();
584 MatrixMarketIterator<Scalar> it(mat_folder);
585 for (; it; ++it)
586 {
587 A = it.matrix();
588 if(A.diagonal().size() <= maxRealWorldSize)
589 {
590 DenseVector b = it.rhs();
591 DenseVector refX = it.refX();
592 std::cout << "INFO | Testing " << sym_to_string(it.sym()) << "sparse problem " << it.matname()
593 << " (" << A.rows() << "x" << A.cols() << ") using " << typeid(Solver).name() << "..." << std::endl;
595 std::string stats = solver_stats(solver);
596 if(stats.size()>0)
597 std::cout << "INFO | " << stats << std::endl;
598 }
599 else
600 {
601 std::cout << "INFO | SKIP sparse problem \"" << it.matname() << "\" (too large)" << std::endl;
602 }
603 }
604 }
605#else
606 EIGEN_UNUSED_VARIABLE(maxRealWorldSize);
607#endif
608
609}
610
611template<typename Solver> void check_sparse_square_determinant(Solver& solver)
612{
613 typedef typename Solver::MatrixType Mat;
614 typedef typename Mat::Scalar Scalar;
616
617 for (int i = 0; i < g_repeat; i++) {
618 // generate the problem
619 Mat A;
620 DenseMatrix dA;
621
622 int size = internal::random<int>(1,30);
623 dA.setRandom(size,size);
624
625 dA = (dA.array().abs()<0.3).select(0,dA);
626 dA.diagonal() = (dA.diagonal().array()==0).select(1,dA.diagonal());
627 A = dA.sparseView();
628 A.makeCompressed();
629
631 }
632}
633
634template<typename Solver> void check_sparse_square_abs_determinant(Solver& solver)
635{
636 typedef typename Solver::MatrixType Mat;
637 typedef typename Mat::Scalar Scalar;
639
640 for (int i = 0; i < g_repeat; i++) {
641 // generate the problem
642 Mat A;
643 DenseMatrix dA;
645 A.makeCompressed();
647 }
648}
649
650template<typename Solver, typename DenseMat>
651void generate_sparse_leastsquare_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300, int options = ForceNonZeroDiag)
652{
653 typedef typename Solver::MatrixType Mat;
654 typedef typename Mat::Scalar Scalar;
655
656 int rows = internal::random<int>(1,maxSize);
657 int cols = internal::random<int>(1,rows);
658 double density = (std::max)(8./(rows*cols), 0.01);
659
660 A.resize(rows,cols);
661 dA.resize(rows,cols);
662
663 initSparse<Scalar>(density, dA, A, options);
664}
665
666template<typename Solver> void check_sparse_leastsquare_solving(Solver& solver)
667{
668 typedef typename Solver::MatrixType Mat;
669 typedef typename Mat::Scalar Scalar;
673
674 int rhsCols = internal::random<int>(1,16);
675
676 Mat A;
677 DenseMatrix dA;
678 for (int i = 0; i < g_repeat; i++) {
680
681 A.makeCompressed();
682 DenseVector b = DenseVector::Random(A.rows());
683 DenseMatrix dB(A.rows(),rhsCols);
684 SpMat B(A.rows(),rhsCols);
685 double density = (std::max)(8./(A.rows()*rhsCols), 0.1);
686 initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
687 B.makeCompressed();
689 check_sparse_solving(solver, A, dB, dA, dB);
690 check_sparse_solving(solver, A, B, dA, dB);
691
692 // check only once
693 if(i==0)
694 {
695 b = DenseVector::Zero(A.rows());
697 }
698 }
699}
Matrix< Scalar, Dynamic, 1 > DenseVector
Definition BenchSparseUtil.h:24
Matrix< Scalar, Dynamic, Dynamic > DenseMatrix
Definition BenchSparseUtil.h:23
BiCGSTAB< SparseMatrix< double > > solver
Definition BiCGSTAB_simple.cpp:5
int i
Definition BiCGSTAB_step_by_step.cpp:9
#define EIGEN_UNUSED_VARIABLE(var)
Definition Macros.h:1076
m col(1)
int rows
Definition Tutorial_commainit_02.cpp:1
int cols
Definition Tutorial_commainit_02.cpp:1
Eigen::SparseMatrix< double > SpMat
Definition Tutorial_sparse_example.cpp:5
Scalar Scalar * c
Definition benchVecAdd.cpp:17
Scalar * b
Definition benchVecAdd.cpp:17
Scalar Scalar int size
Definition benchVecAdd.cpp:17
SCALAR Scalar
Definition bench_gemm.cpp:46
Matrix< RealScalar, Dynamic, Dynamic > M
Definition bench_gemm.cpp:51
NumTraits< Scalar >::Real RealScalar
Definition bench_gemm.cpp:47
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
Definition bench_gemm.cpp:48
Matrix< SCALARB, Dynamic, Dynamic, opt_B > B
Definition bench_gemm.cpp:49
#define EIGEN_TEST_MAX_SIZE
Definition boostmultiprec.cpp:16
Base class for linear iterative solvers.
Definition IterativeSolverBase.h:144
A matrix or vector expression mapping an existing array of data.
Definition Map.h:96
Sparse matrix.
Definition MappedSparseMatrix.h:34
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
Iterator to browse matrices from a specified folder.
Definition MatrixMarketIterator.h:43
MatrixType & matrix()
Definition MatrixMarketIterator.h:74
VectorType & refX()
Definition MatrixMarketIterator.h:145
std::string & matname()
Definition MatrixMarketIterator.h:163
VectorType & rhs()
Definition MatrixMarketIterator.h:113
int sym()
Definition MatrixMarketIterator.h:165
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:180
Permutation matrix.
Definition PermutationMatrix.h:298
NumTraits< Scalar >::Real RealScalar
Definition PlainObjectBase.h:109
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition PlainObjectBase.h:145
internal::traits< Derived >::Scalar Scalar
Definition PlainObjectBase.h:106
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Definition PlainObjectBase.h:271
Derived & setRandom(Index size)
Definition Random.h:151
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition PlainObjectBase.h:143
Sparse supernodal LU factorization for general matrices.
Definition SparseLU.h:132
Base class of any sparse matrices or sparse expressions.
Definition SparseMatrixBase.h:28
A versatible sparse matrix representation.
Definition SparseMatrix.h:98
A base class for sparse solvers.
Definition SparseSolverBase.h:68
const Solve< Derived, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition SparseSolverBase.h:88
a sparse vector class
Definition SparseVector.h:66
#define VERIFY(a)
Definition main.h:380
#define CALL_SUBTEST(FUNC)
Definition main.h:399
#define VERIFY_IS_EQUAL(a, b)
Definition main.h:386
#define abs(x)
Definition datatypes.h:17
Matrix< Scalar, Dynamic, Dynamic > Mat
Definition gemm_common.h:15
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition gnuplot_common_settings.hh:12
@ Symmetric
Definition Constants.h:227
@ Lower
Definition Constants.h:209
@ Upper
Definition Constants.h:211
@ NumericalIssue
Definition Constants.h:444
@ Success
Definition Constants.h:442
#define VERIFY_IS_APPROX(a, b)
Definition integer_types.cpp:15
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:74
@ SPD
Definition MatrixMarketIterator.h:17
@ ForceNonZeroDiag
Definition sparse.h:37
int generate_sparse_spd_problem(Solver &, typename Solver::MatrixType &A, typename Solver::MatrixType &halfA, DenseMat &dA, int maxSize=300)
Definition sparse_solver.h:346
void check_sparse_square_solving(Solver &solver, int maxSize=300, int maxRealWorldSize=100000, bool checkDeficient=false)
Definition sparse_solver.h:534
void generate_sparse_leastsquare_problem(Solver &, typename Solver::MatrixType &A, DenseMat &dA, int maxSize=300, int options=ForceNonZeroDiag)
Definition sparse_solver.h:651
Index generate_sparse_square_problem(Solver &, typename Solver::MatrixType &A, DenseMat &dA, int maxSize=300, int options=ForceNonZeroDiag)
Definition sparse_solver.h:507
void check_sparse_solving(Solver &solver, const typename Solver::MatrixType &A, const Rhs &b, const DenseMat &dA, const DenseRhs &db)
Definition sparse_solver.h:43
void check_sparse_square_abs_determinant(Solver &solver)
Definition sparse_solver.h:634
void check_sparse_spd_determinant(Solver &solver)
Definition sparse_solver.h:489
void solve_with_guess(IterativeSolverBase< Solver > &solver, const MatrixBase< Rhs > &b, const Guess &g, Result &x)
Definition sparse_solver.h:16
void check_sparse_spd_solving(Solver &solver, int maxSize=(std::min)(300, EIGEN_TEST_MAX_SIZE), int maxRealWorldSize=100000)
Definition sparse_solver.h:404
void check_sparse_determinant(Solver &solver, const typename Solver::MatrixType &A, const DenseMat &dA)
Definition sparse_solver.h:312
void check_sparse_abs_determinant(Solver &solver, const typename Solver::MatrixType &A, const DenseMat &dA)
Definition sparse_solver.h:328
void check_sparse_leastsquare_solving(Solver &solver)
Definition sparse_solver.h:666
void check_sparse_solving_real_cases(Solver &solver, const typename Solver::MatrixType &A, const Rhs &b, const typename Solver::MatrixType &fullA, const Rhs &refX)
Definition sparse_solver.h:279
void check_sparse_square_determinant(Solver &solver)
Definition sparse_solver.h:611
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition NumTraits.h:233
Definition sparse_solver.h:524
Index m_col
Definition sparse_solver.h:525
bool operator()(Index, Index col, const Scalar &) const
Definition sparse_solver.h:528
prune_column(Index col)
Definition sparse_solver.h:526