|
TR-mbed 1.0
|
Rotation given by a cosine-sine pair. More...
#include <Jacobi.h>
Public Types | |
| typedef NumTraits< Scalar >::Real | RealScalar |
Public Member Functions | |
| EIGEN_DEVICE_FUNC | JacobiRotation () |
| EIGEN_DEVICE_FUNC | JacobiRotation (const Scalar &c, const Scalar &s) |
| EIGEN_DEVICE_FUNC Scalar & | c () |
| EIGEN_DEVICE_FUNC Scalar | c () const |
| EIGEN_DEVICE_FUNC Scalar & | s () |
| EIGEN_DEVICE_FUNC Scalar | s () const |
| EIGEN_DEVICE_FUNC JacobiRotation | operator* (const JacobiRotation &other) |
| EIGEN_DEVICE_FUNC JacobiRotation | transpose () const |
| EIGEN_DEVICE_FUNC JacobiRotation | adjoint () const |
| template<typename Derived > | |
| EIGEN_DEVICE_FUNC bool | makeJacobi (const MatrixBase< Derived > &, Index p, Index q) |
| EIGEN_DEVICE_FUNC bool | makeJacobi (const RealScalar &x, const Scalar &y, const RealScalar &z) |
| EIGEN_DEVICE_FUNC void | makeGivens (const Scalar &p, const Scalar &q, Scalar *r=0) |
Protected Member Functions | |
| EIGEN_DEVICE_FUNC void | makeGivens (const Scalar &p, const Scalar &q, Scalar *r, internal::true_type) |
| EIGEN_DEVICE_FUNC void | makeGivens (const Scalar &p, const Scalar &q, Scalar *r, internal::false_type) |
Protected Attributes | |
| Scalar | m_c |
| Scalar | m_s |
Rotation given by a cosine-sine pair.
\jacobi_module
This class represents a Jacobi or Givens rotation. This is a 2D rotation in the plane J of angle 
c and sine s as follow: 
You can apply the respective counter-clockwise rotation to a column vector v by applying its adjoint on the left: 
| typedef NumTraits<Scalar>::Real Eigen::JacobiRotation< Scalar >::RealScalar |
|
inline |
Default constructor without any initialization.
|
inline |
Construct a planar rotation from a cosine-sine pair (c, s).
|
inline |
Returns the adjoint transformation
|
inline |
|
inline |
|
protected |
|
protected |
| EIGEN_DEVICE_FUNC void Eigen::JacobiRotation< Scalar >::makeGivens | ( | const Scalar & | p, |
| const Scalar & | q, | ||
| Scalar * | r = 0 |
||
| ) |
Makes *this as a Givens rotation G such that applying 


The value of r is returned if r is not null (the default is null). Also note that G is built such that the cosine is always real.
Example:
Output:
This function implements the continuous Givens rotation generation algorithm found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
|
inline |
Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the 2x2 selfadjoint matrix 

Example:
Output:
| EIGEN_DEVICE_FUNC bool Eigen::JacobiRotation< Scalar >::makeJacobi | ( | const RealScalar & | x, |
| const Scalar & | y, | ||
| const RealScalar & | z | ||
| ) |
Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the selfadjoint 2x2 matrix 

|
inline |
Concatenates two planar rotation
|
inline |
|
inline |
|
inline |
Returns the transposed transformation
|
protected |
|
protected |