#include <CompressedStorage.h>
|
| | CompressedStorage () |
| |
| | CompressedStorage (Index size) |
| |
| | CompressedStorage (const CompressedStorage &other) |
| |
| CompressedStorage & | operator= (const CompressedStorage &other) |
| |
| void | swap (CompressedStorage &other) |
| |
| | ~CompressedStorage () |
| |
| void | reserve (Index size) |
| |
| void | squeeze () |
| |
| void | resize (Index size, double reserveSizeFactor=0) |
| |
| void | append (const Scalar &v, Index i) |
| |
| Index | size () const |
| |
| Index | allocatedSize () const |
| |
| void | clear () |
| |
| const Scalar * | valuePtr () const |
| |
| Scalar * | valuePtr () |
| |
| const StorageIndex * | indexPtr () const |
| |
| StorageIndex * | indexPtr () |
| |
| Scalar & | value (Index i) |
| |
| const Scalar & | value (Index i) const |
| |
| StorageIndex & | index (Index i) |
| |
| const StorageIndex & | index (Index i) const |
| |
| Index | searchLowerIndex (Index key) const |
| |
| Index | searchLowerIndex (Index start, Index end, Index key) const |
| |
| Scalar | at (Index key, const Scalar &defaultValue=Scalar(0)) const |
| |
| Scalar | atInRange (Index start, Index end, Index key, const Scalar &defaultValue=Scalar(0)) const |
| |
| Scalar & | atWithInsertion (Index key, const Scalar &defaultValue=Scalar(0)) |
| |
| void | moveChunk (Index from, Index to, Index chunkSize) |
| |
| void | prune (const Scalar &reference, const RealScalar &epsilon=NumTraits< RealScalar >::dummy_precision()) |
| |
◆ RealScalar
◆ Scalar
◆ StorageIndex
◆ CompressedStorage() [1/3]
◆ CompressedStorage() [2/3]
◆ CompressedStorage() [3/3]
◆ ~CompressedStorage()
◆ allocatedSize()
◆ append()
◆ at()
- Returns
- the stored value at index key If the value does not exist, then the value defaultValue is returned without any insertion.
◆ atInRange()
Like at(), but the search is performed in the range [start,end)
◆ atWithInsertion()
- Returns
- a reference to the value at index key If the value does not exist, then the value defaultValue is inserted such that the keys are sorted.
◆ clear()
◆ index() [1/2]
◆ index() [2/2]
◆ indexPtr() [1/2]
◆ indexPtr() [2/2]
◆ moveChunk()
◆ operator=()
◆ prune()
◆ reallocate()
◆ reserve()
◆ resize()
◆ searchLowerIndex() [1/2]
- Returns
- the largest
k such that for all j in [0,k) index[j]<key
◆ searchLowerIndex() [2/2]
- Returns
- the largest
k in [start,end) such that for all j in [start,k) index[j]<key
◆ size()
◆ squeeze()
◆ swap()
◆ value() [1/2]
◆ value() [2/2]
◆ valuePtr() [1/2]
◆ valuePtr() [2/2]
◆ m_allocatedSize
◆ m_indices
◆ m_size
◆ m_values
The documentation for this class was generated from the following file: