TR-mbed 1.0
Loading...
Searching...
No Matches
level1_cplx_impl.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "common.h"
11
15 inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); }
16};
17namespace Eigen {
18 namespace internal {
19 template<> struct functor_traits<scalar_norm1_op >
20 {
22 };
23 }
24}
25
26// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
27// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
29{
30// std::cerr << "__asum " << *n << " " << *incx << "\n";
31 Complex* x = reinterpret_cast<Complex*>(px);
32
33 if(*n<=0) return 0;
34
35 if(*incx==1) return make_vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
36 else return make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
37}
38
39int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amax))(int *n, RealScalar *px, int *incx)
40{
41 if(*n<=0) return 0;
42 Scalar* x = reinterpret_cast<Scalar*>(px);
43
45 if(*incx==1) make_vector(x,*n).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
46 else make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
47 return int(ret)+1;
48}
49
50int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amin))(int *n, RealScalar *px, int *incx)
51{
52 if(*n<=0) return 0;
53 Scalar* x = reinterpret_cast<Scalar*>(px);
54
56 if(*incx==1) make_vector(x,*n).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
57 else make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
58 return int(ret)+1;
59}
60
61// computes a dot product of a conjugated vector with another vector.
63{
64// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
65 Scalar* res = reinterpret_cast<Scalar*>(pres);
66
67 if(*n<=0)
68 {
69 *res = Scalar(0);
70 return 0;
71 }
72
73 Scalar* x = reinterpret_cast<Scalar*>(px);
74 Scalar* y = reinterpret_cast<Scalar*>(py);
75
76 if(*incx==1 && *incy==1) *res = (make_vector(x,*n).dot(make_vector(y,*n)));
77 else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,*incy)));
78 else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,*incy)));
79 else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,-*incy).reverse()));
80 else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,-*incy).reverse()));
81 return 0;
82}
83
84// computes a vector-vector dot product without complex conjugation.
86{
87 Scalar* res = reinterpret_cast<Scalar*>(pres);
88
89 if(*n<=0)
90 {
91 *res = Scalar(0);
92 return 0;
93 }
94
95 Scalar* x = reinterpret_cast<Scalar*>(px);
96 Scalar* y = reinterpret_cast<Scalar*>(py);
97
98 if(*incx==1 && *incy==1) *res = (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum();
99 else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum();
100 else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum();
101 else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
102 else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
103 return 0;
104}
105
107{
108// std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
109 if(*n<=0) return 0;
110
111 Scalar* x = reinterpret_cast<Scalar*>(px);
112
113 if(*incx==1)
114 return make_vector(x,*n).stableNorm();
115
116 return make_vector(x,*n,*incx).stableNorm();
117}
118
120{
121 if(*n<=0) return 0;
122
123 Scalar* x = reinterpret_cast<Scalar*>(px);
124 Scalar* y = reinterpret_cast<Scalar*>(py);
127
130
133
134 // TODO implement mixed real-scalar rotations
135 if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
136 else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
137 else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
138
139 return 0;
140}
141
143{
144 if(*n<=0) return 0;
145
146 Scalar* x = reinterpret_cast<Scalar*>(px);
148
149// std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
150
151 if(*incx==1) make_vector(x,*n) *= alpha;
152 else make_vector(x,*n,std::abs(*incx)) *= alpha;
153
154 return 0;
155}
ArrayXXi a
Definition Array_initializer_list_23_cxx11.cpp:1
int n
Definition BiCGSTAB_simple.cpp:1
int i
Definition BiCGSTAB_step_by_step.cpp:9
#define EIGEN_CAT(a, b)
Definition Macros.h:902
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
Definition PartialRedux_count.cpp:3
#define EIGEN_EMPTY_STRUCT_CTOR(X)
Definition XprHelper.h:22
void reverse(const MatrixType &m)
Definition array_reverse.cpp:16
SCALAR Scalar
Definition bench_gemm.cpp:46
NumTraits< Scalar >::Real RealScalar
Definition bench_gemm.cpp:47
#define REAL_SCALAR_SUFFIX
Definition complex_double.cpp:13
Rotation given by a cosine-sine pair.
Definition Jacobi.h:35
A matrix or vector expression mapping an existing array of data.
Definition Map.h:96
Expression of the reverse of a vector or matrix.
Definition Reverse.h:65
std::complex< RealScalar > Complex
Definition common.h:94
#define EIGEN_BLAS_FUNC(X)
Definition common.h:173
RealScalar RealScalar int * incx
Definition level1_cplx_impl.h:29
Scalar * x
Definition level1_cplx_impl.h:42
if incx return make_vector(x, *n).unaryExpr< scalar_norm1_op >().sum()
int RealScalar int RealScalar int RealScalar * pc
Definition level1_cplx_impl.h:119
RealScalar s
Definition level1_cplx_impl.h:126
return int(ret)+1
int EIGEN_BLAS_FUNC() dotuw(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres)
Definition level1_cplx_impl.h:85
StridedVectorType vy(make_vector(y, *n, std::abs(*incy)))
RealScalar c
Definition level1_cplx_impl.h:125
int RealScalar int RealScalar int RealScalar RealScalar * ps
Definition level1_cplx_impl.h:120
int EIGEN_BLAS_FUNC() dotcw(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres)
Definition level1_cplx_impl.h:62
int RealScalar * palpha
Definition level1_cplx_impl.h:142
StridedVectorType vx(make_vector(x, *n, std::abs(*incx)))
Scalar * y
Definition level1_cplx_impl.h:124
Reverse< StridedVectorType > rvy(vy)
int RealScalar int RealScalar int * incy
Definition level1_cplx_impl.h:119
RealScalar RealScalar * px
Definition level1_cplx_impl.h:28
int RealScalar int RealScalar * py
Definition level1_cplx_impl.h:119
RealScalar alpha
Definition level1_cplx_impl.h:147
Reverse< StridedVectorType > rvx(vx)
DenseIndex ret
Definition level1_cplx_impl.h:44
int EIGEN_BLAS_FUNC() scal(int *n, RealScalar *palpha, RealScalar *px, int *incx)
Definition level1_impl.h:117
RealScalar EIGEN_BLAS_FUNC() asum(int *n, RealScalar *px, int *incx)
Definition level1_real_impl.h:14
Scalar EIGEN_BLAS_FUNC() nrm2(int *n, RealScalar *px, int *incx)
Definition level1_real_impl.h:68
int EIGEN_BLAS_FUNC() rot(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
Definition level1_real_impl.h:79
Namespace containing all symbols from the Eigen library.
Definition bench_norm.cpp:85
EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
Definition Meta.h:66
Definition BandTriangularSolver.h:13
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition NumTraits.h:233
Definition XprHelper.h:176
@ PacketAccess
Definition XprHelper.h:180
@ Cost
Definition XprHelper.h:179
Definition level1_cplx_impl.h:12
RealScalar result_type
Definition level1_cplx_impl.h:13