TR-mbed 1.0
Loading...
Searching...
No Matches
Quaternion.h
Go to the documentation of this file.
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_QUATERNION_H
12#define EIGEN_QUATERNION_H
13namespace Eigen {
14
15
16/***************************************************************************
17* Definition of QuaternionBase<Derived>
18* The implementation is at the end of the file
19***************************************************************************/
20
21namespace internal {
22template<typename Other,
23 int OtherRows=Other::RowsAtCompileTime,
24 int OtherCols=Other::ColsAtCompileTime>
26}
27
34template<class Derived>
35class QuaternionBase : public RotationBase<Derived, 3>
36{
37 public:
39
40 using Base::operator*;
41 using Base::derived;
42
46 typedef typename Coefficients::CoeffReturnType CoeffReturnType;
49
50
51 enum {
53 };
54
55 // typedef typename Matrix<Scalar,4,1> Coefficients;
62
63
64
66 EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); }
68 EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); }
70 EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); }
72 EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); }
73
75 EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); }
77 EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); }
79 EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); }
81 EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); }
82
84 EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
85
87 EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
88
90 EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
91
94
96 template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
97
98// disabled this copy operator as it is giving very strange compilation errors when compiling
99// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
100// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
101// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
102// Derived& operator=(const QuaternionBase& other)
103// { return operator=<Derived>(other); }
104
106 template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m);
107
112
115 EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
116
120 EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
121
125 EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); }
126
129 EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); }
133
139 template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
140
141 template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
142
145
147 template<typename Derived1, typename Derived2>
149
151 template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
152
155
158
159 template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
160
165 template<class OtherDerived>
167 { return coeffs() == other.coeffs(); }
168
173 template<class OtherDerived>
175 { return coeffs() != other.coeffs(); }
176
181 template<class OtherDerived>
183 { return coeffs().isApprox(other.coeffs(), prec); }
184
187
188 #ifdef EIGEN_PARSED_BY_DOXYGEN
194 template<typename NewScalarType>
196
197 #else
198
199 template<typename NewScalarType>
200 EIGEN_DEVICE_FUNC inline
202 {
203 return derived();
204 }
205
206 template<typename NewScalarType>
207 EIGEN_DEVICE_FUNC inline
209 {
210 return Quaternion<NewScalarType>(coeffs().template cast<NewScalarType>());
211 }
212 #endif
213
214#ifndef EIGEN_NO_IO
215 friend std::ostream& operator<<(std::ostream& s, const QuaternionBase<Derived>& q) {
216 s << q.x() << "i + " << q.y() << "j + " << q.z() << "k" << " + " << q.w();
217 return s;
218 }
219#endif
220
221#ifdef EIGEN_QUATERNIONBASE_PLUGIN
222# include EIGEN_QUATERNIONBASE_PLUGIN
223#endif
224protected:
227};
228
229/***************************************************************************
230* Definition/implementation of Quaternion<Scalar>
231***************************************************************************/
232
258namespace internal {
259template<typename _Scalar,int _Options>
260struct traits<Quaternion<_Scalar,_Options> >
261{
263 typedef _Scalar Scalar;
265 enum{
267 Flags = LvalueBit
268 };
269};
270}
271
272template<typename _Scalar, int _Options>
273class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
274{
275public:
277 enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 };
278
279 typedef _Scalar Scalar;
280
282 using Base::operator*=;
283
286
289
297 EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
298
300 EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {}
301
303 template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
304
306 EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
307
312 template<typename Derived>
313 EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
314
316 template<typename OtherScalar, int OtherOptions>
318 { m_coeffs = other.coeffs().template cast<Scalar>(); }
319
320#if EIGEN_HAS_RVALUE_REFERENCES
321 // We define a copy constructor, which means we don't get an implicit move constructor or assignment operator.
323 EIGEN_DEVICE_FUNC inline Quaternion(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
324 : m_coeffs(std::move(other.coeffs()))
325 {}
326
328 EIGEN_DEVICE_FUNC Quaternion& operator=(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value)
329 {
330 m_coeffs = std::move(other.coeffs());
331 return *this;
332 }
333#endif
334
336
337 template<typename Derived1, typename Derived2>
339
341 EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
342
343 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment))
344
345#ifdef EIGEN_QUATERNION_PLUGIN
346# include EIGEN_QUATERNION_PLUGIN
347#endif
348
349protected:
351
352#ifndef EIGEN_PARSED_BY_DOXYGEN
354 {
355 EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
356 INVALID_MATRIX_TEMPLATE_PARAMETERS)
357 }
358#endif
359};
360
367
368/***************************************************************************
369* Specialization of Map<Quaternion<Scalar>>
370***************************************************************************/
371
372namespace internal {
373 template<typename _Scalar, int _Options>
374 struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
375 {
377 };
378}
379
380namespace internal {
381 template<typename _Scalar, int _Options>
382 struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
383 {
385 typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
386 enum {
387 Flags = TraitsBase::Flags & ~LvalueBit
388 };
389 };
390}
391
403template<typename _Scalar, int _Options>
404class Map<const Quaternion<_Scalar>, _Options >
405 : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
406{
407 public:
409
410 typedef _Scalar Scalar;
413 using Base::operator*=;
414
421 EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
422
423 EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
424
425 protected:
427};
428
440template<typename _Scalar, int _Options>
441class Map<Quaternion<_Scalar>, _Options >
442 : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
443{
444 public:
446
447 typedef _Scalar Scalar;
450 using Base::operator*=;
451
458 EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
459
460 EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
461 EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
462
463 protected:
465};
466
479
480/***************************************************************************
481* Implementation of QuaternionBase methods
482***************************************************************************/
483
484// Generic Quaternion * Quaternion product
485// This product can be specialized for a given architecture via the Arch template argument.
486namespace internal {
487template<int Arch, class Derived1, class Derived2, typename Scalar> struct quat_product
488{
490 return Quaternion<Scalar>
491 (
492 a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
493 a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
494 a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
495 a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
496 );
497 }
498};
499}
500
502template <class Derived>
503template <class OtherDerived>
504EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
506{
508 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
509 return internal::quat_product<Architecture::Target, Derived, OtherDerived,
510 typename internal::traits<Derived>::Scalar>::run(*this, other);
511}
512
514template <class Derived>
515template <class OtherDerived>
517{
518 derived() = derived() * other.derived();
519 return derived();
520}
521
529template <class Derived>
532{
533 // Note that this algorithm comes from the optimization by hand
534 // of the conversion to a Matrix followed by a Matrix/Vector product.
535 // It appears to be much faster than the common algorithm found
536 // in the literature (30 versus 39 flops). It also requires two
537 // Vector3 as temporaries.
538 Vector3 uv = this->vec().cross(v);
539 uv += uv;
540 return v + this->w() * uv + this->vec().cross(uv);
541}
542
543template<class Derived>
549
550template<class Derived>
551template<class OtherDerived>
553{
554 coeffs() = other.coeffs();
555 return derived();
556}
557
560template<class Derived>
562{
563 EIGEN_USING_STD(cos)
564 EIGEN_USING_STD(sin)
565 Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
566 this->w() = cos(ha);
567 this->vec() = sin(ha) * aa.axis();
568 return derived();
569}
570
577template<class Derived>
578template<class MatrixDerived>
580{
582 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
584 return derived();
585}
586
590template<class Derived>
593{
594 // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
595 // if not inlined then the cost of the return by value is huge ~ +35%,
596 // however, not inlining this function is an order of magnitude slower, so
597 // it has to be inlined, and so the return by value is not an issue
598 Matrix3 res;
599
600 const Scalar tx = Scalar(2)*this->x();
601 const Scalar ty = Scalar(2)*this->y();
602 const Scalar tz = Scalar(2)*this->z();
603 const Scalar twx = tx*this->w();
604 const Scalar twy = ty*this->w();
605 const Scalar twz = tz*this->w();
606 const Scalar txx = tx*this->x();
607 const Scalar txy = ty*this->x();
608 const Scalar txz = tz*this->x();
609 const Scalar tyy = ty*this->y();
610 const Scalar tyz = tz*this->y();
611 const Scalar tzz = tz*this->z();
612
613 res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
614 res.coeffRef(0,1) = txy-twz;
615 res.coeffRef(0,2) = txz+twy;
616 res.coeffRef(1,0) = txy+twz;
617 res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
618 res.coeffRef(1,2) = tyz-twx;
619 res.coeffRef(2,0) = txz-twy;
620 res.coeffRef(2,1) = tyz+twx;
621 res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
622
623 return res;
624}
625
636template<class Derived>
637template<typename Derived1, typename Derived2>
639{
640 EIGEN_USING_STD(sqrt)
641 Vector3 v0 = a.normalized();
642 Vector3 v1 = b.normalized();
643 Scalar c = v1.dot(v0);
644
645 // if dot == -1, vectors are nearly opposites
646 // => accurately compute the rotation axis by computing the
647 // intersection of the two planes. This is done by solving:
648 // x^T v0 = 0
649 // x^T v1 = 0
650 // under the constraint:
651 // ||x|| = 1
652 // which yields a singular value problem
654 {
655 c = numext::maxi(c,Scalar(-1));
656 Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
658 Vector3 axis = svd.matrixV().col(2);
659
660 Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
661 this->w() = sqrt(w2);
662 this->vec() = axis * sqrt(Scalar(1) - w2);
663 return derived();
664 }
665 Vector3 axis = v0.cross(v1);
666 Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
667 Scalar invs = Scalar(1)/s;
668 this->vec() = axis * invs;
669 this->w() = s * Scalar(0.5);
670
671 return derived();
672}
673
678template<typename Scalar, int Options>
680{
681 EIGEN_USING_STD(sqrt)
682 EIGEN_USING_STD(sin)
683 EIGEN_USING_STD(cos)
684 const Scalar u1 = internal::random<Scalar>(0, 1),
687 const Scalar a = sqrt(Scalar(1) - u1),
688 b = sqrt(u1);
689 return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3));
690}
691
692
703template<typename Scalar, int Options>
704template<typename Derived1, typename Derived2>
711
712
719template <class Derived>
721{
722 // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
723 Scalar n2 = this->squaredNorm();
724 if (n2 > Scalar(0))
725 return Quaternion<Scalar>(conjugate().coeffs() / n2);
726 else
727 {
728 // return an invalid result to flag the error
729 return Quaternion<Scalar>(Coefficients::Zero());
730 }
731}
732
733// Generic conjugate of a Quaternion
734namespace internal {
735template<int Arch, class Derived, typename Scalar> struct quat_conj
736{
738 return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z());
739 }
740};
741}
742
749template <class Derived>
750EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar>
752{
754 typename internal::traits<Derived>::Scalar>::run(*this);
755
756}
757
761template <class Derived>
762template <class OtherDerived>
765{
767 Quaternion<Scalar> d = (*this) * other.conjugate();
768 return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) );
769}
770
771
772
779template <class Derived>
780template <class OtherDerived>
783{
785 EIGEN_USING_STD(sin)
786 const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
787 Scalar d = this->dot(other);
788 Scalar absD = numext::abs(d);
789
790 Scalar scale0;
791 Scalar scale1;
792
793 if(absD>=one)
794 {
795 scale0 = Scalar(1) - t;
796 scale1 = t;
797 }
798 else
799 {
800 // theta is the angle between the 2 quaternions
801 Scalar theta = acos(absD);
802 Scalar sinTheta = sin(theta);
803
804 scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
805 scale1 = sin( ( t * theta) ) / sinTheta;
806 }
807 if(d<Scalar(0)) scale1 = -scale1;
808
809 return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
810}
811
812namespace internal {
813
814// set from a rotation matrix
815template<typename Other>
817{
818 typedef typename Other::Scalar Scalar;
819 template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat)
820 {
822 EIGEN_USING_STD(sqrt)
823 // This algorithm comes from "Quaternion Calculus and Fast Animation",
824 // Ken Shoemake, 1987 SIGGRAPH course notes
825 Scalar t = mat.trace();
826 if (t > Scalar(0))
827 {
828 t = sqrt(t + Scalar(1.0));
829 q.w() = Scalar(0.5)*t;
830 t = Scalar(0.5)/t;
831 q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
832 q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
833 q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
834 }
835 else
836 {
837 Index i = 0;
838 if (mat.coeff(1,1) > mat.coeff(0,0))
839 i = 1;
840 if (mat.coeff(2,2) > mat.coeff(i,i))
841 i = 2;
842 Index j = (i+1)%3;
843 Index k = (j+1)%3;
844
845 t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
846 q.coeffs().coeffRef(i) = Scalar(0.5) * t;
847 t = Scalar(0.5)/t;
848 q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
849 q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
850 q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
851 }
852 }
853};
854
855// set from a vector of coefficients assumed to be a quaternion
856template<typename Other>
858{
859 typedef typename Other::Scalar Scalar;
860 template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec)
861 {
862 q.coeffs() = vec;
863 }
864};
865
866} // end namespace internal
867
868} // end namespace Eigen
869
870#endif // EIGEN_QUATERNION_H
Matrix3f m
Definition AngleAxis_mimic_euler.cpp:1
EIGEN_DEVICE_FUNC const AcosReturnType acos() const
Definition ArrayCwiseUnaryOps.h:297
ArrayXXi a
Definition Array_initializer_list_23_cxx11.cpp:1
Array< int, Dynamic, 1 > v
Definition Array_initializer_list_vector_cxx11.cpp:1
int i
Definition BiCGSTAB_step_by_step.cpp:9
EIGEN_DEVICE_FUNC ConjugateReturnType conjugate() const
Definition CommonCwiseUnaryOps.h:74
#define EIGEN_PI
Definition MathFunctions.h:16
cout<< "Here is the matrix m:"<< endl<< m<< endl;JacobiSVD< MatrixXf > svd(m, ComputeThinU|ComputeThinV)
#define EIGEN_DEFAULT_COPY_CONSTRUCTOR(CLASS)
Definition Macros.h:1221
#define EIGEN_NOEXCEPT_IF(x)
Definition Macros.h:1419
#define EIGEN_USING_STD(FUNC)
Definition Macros.h:1185
#define EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(Derived)
Definition Macros.h:1247
#define EIGEN_DEVICE_FUNC
Definition Macros.h:976
#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived)
Definition Macros.h:1231
#define EIGEN_STRONG_INLINE
Definition Macros.h:917
int data[]
Definition Map_placement_new.cpp:1
RowVector3d w
Definition Matrix_resize_int.cpp:3
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
Definition Memory.h:838
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
Definition PartialRedux_count.cpp:3
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition StaticAssert.h:127
MatrixXf mat
Definition Tutorial_AdvancedInitialization_CommaTemporary.cpp:1
M1<< 1, 2, 3, 4, 5, 6, 7, 8, 9;Map< RowVectorXf > v1(M1.data(), M1.size())
Scalar Scalar * c
Definition benchVecAdd.cpp:17
Scalar * b
Definition benchVecAdd.cpp:17
SCALAR Scalar
Definition bench_gemm.cpp:46
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.
Definition AngleAxis.h:50
EIGEN_DEVICE_FUNC const Vector3 & axis() const
Definition AngleAxis.h:96
EIGEN_DEVICE_FUNC Scalar angle() const
Definition AngleAxis.h:91
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition JacobiSVD.h:490
QuaternionBase< Map< Quaternion< _Scalar >, _Options > > Base
Definition Quaternion.h:445
EIGEN_DEVICE_FUNC const Coefficients & coeffs() const
Definition Quaternion.h:461
EIGEN_DEVICE_FUNC Coefficients & coeffs()
Definition Quaternion.h:460
_Scalar Scalar
Definition Quaternion.h:447
internal::traits< Map >::Coefficients Coefficients
Definition Quaternion.h:448
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Map(Scalar *coeffs)
Definition Quaternion.h:458
Coefficients m_coeffs
Definition Quaternion.h:464
EIGEN_DEVICE_FUNC const Coefficients & coeffs() const
Definition Quaternion.h:423
QuaternionBase< Map< const Quaternion< _Scalar >, _Options > > Base
Definition Quaternion.h:408
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Map(const Scalar *coeffs)
Definition Quaternion.h:421
internal::traits< Map >::Coefficients Coefficients
Definition Quaternion.h:411
_Scalar Scalar
Definition Quaternion.h:410
const Coefficients m_coeffs
Definition Quaternion.h:426
A matrix or vector expression mapping an existing array of data.
Definition Map.h:96
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:180
Base class for quaternion expressions.
Definition Quaternion.h:36
EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase< OtherDerived > &other) const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3 &v) const
Definition Quaternion.h:531
EIGEN_DEVICE_FUNC bool operator!=(const QuaternionBase< OtherDerived > &other) const
Definition Quaternion.h:174
internal::conditional< bool(internal::traits< Derived >::Flags &LvalueBit), Scalar &, CoeffReturnType >::type NonConstCoeffReturnType
Definition Quaternion.h:48
EIGEN_DEVICE_FUNC const internal::traits< Derived >::Coefficients & coeffs() const
Definition Quaternion.h:90
EIGEN_DEVICE_FUNC QuaternionBase & setIdentity()
Definition Quaternion.h:115
EIGEN_DEVICE_FUNC Quaternion< Scalar > normalized() const
Definition Quaternion.h:132
EIGEN_DEVICE_FUNC VectorBlock< Coefficients, 3 > vec()
Definition Quaternion.h:87
EIGEN_DEVICE_FUNC NonConstCoeffReturnType z()
Definition Quaternion.h:79
EIGEN_DEVICE_FUNC Scalar norm() const
Definition Quaternion.h:125
EIGEN_DEVICE_FUNC Quaternion< Scalar > slerp(const Scalar &t, const QuaternionBase< OtherDerived > &other) const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase< Derived > & operator=(const QuaternionBase< Derived > &other)
Definition Quaternion.h:544
EIGEN_DEVICE_FUNC Scalar squaredNorm() const
Definition Quaternion.h:120
EIGEN_DEVICE_FUNC internal::enable_if<!internal::is_same< Scalar, NewScalarType >::value, Quaternion< NewScalarType > >::type cast() const
Definition Quaternion.h:208
EIGEN_DEVICE_FUNC Derived & setFromTwoVectors(const MatrixBase< Derived1 > &a, const MatrixBase< Derived2 > &b)
Definition Quaternion.h:638
EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix() const
Definition Quaternion.h:592
EIGEN_DEVICE_FUNC CoeffReturnType w() const
Definition Quaternion.h:72
EIGEN_DEVICE_FUNC Quaternion< Scalar > inverse() const
Definition Quaternion.h:720
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator=(const QuaternionBase< OtherDerived > &other)
Definition Quaternion.h:552
EIGEN_DEVICE_FUNC CoeffReturnType y() const
Definition Quaternion.h:68
EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
Definition Quaternion.h:182
EIGEN_DEVICE_FUNC internal::enable_if< internal::is_same< Scalar, NewScalarType >::value, constDerived & >::type cast() const
Definition Quaternion.h:201
static EIGEN_DEVICE_FUNC Quaternion< Scalar > Identity()
Definition Quaternion.h:111
@ Flags
Definition Quaternion.h:52
Matrix< Scalar, 3, 1 > Vector3
Definition Quaternion.h:57
EIGEN_DEVICE_FUNC NonConstCoeffReturnType y()
Definition Quaternion.h:77
EIGEN_DEVICE_FUNC Quaternion< Scalar > conjugate() const
Definition Quaternion.h:751
EIGEN_DEVICE_FUNC void normalize()
Definition Quaternion.h:129
EIGEN_DEVICE_FUNC Scalar dot(const QuaternionBase< OtherDerived > &other) const
Definition Quaternion.h:139
EIGEN_DEVICE_FUNC NonConstCoeffReturnType w()
Definition Quaternion.h:81
Matrix< Scalar, 3, 3 > Matrix3
Definition Quaternion.h:59
internal::traits< Derived >::Coefficients Coefficients
Definition Quaternion.h:45
EIGEN_DEVICE_FUNC NonConstCoeffReturnType x()
Definition Quaternion.h:75
RotationBase< Derived, 3 > Base
Definition Quaternion.h:38
EIGEN_DEVICE_FUNC internal::traits< Derived >::Coefficients & coeffs()
Definition Quaternion.h:93
Coefficients::CoeffReturnType CoeffReturnType
Definition Quaternion.h:46
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator*=(const QuaternionBase< OtherDerived > &q)
Definition Quaternion.h:516
EIGEN_DEVICE_FUNC bool operator==(const QuaternionBase< OtherDerived > &other) const
Definition Quaternion.h:166
friend std::ostream & operator<<(std::ostream &s, const QuaternionBase< Derived > &q)
Definition Quaternion.h:215
NumTraits< Scalar >::Real RealScalar
Definition Quaternion.h:44
EIGEN_DEVICE_FUNC const VectorBlock< const Coefficients, 3 > vec() const
Definition Quaternion.h:84
internal::traits< Derived >::Scalar Scalar
Definition Quaternion.h:43
AngleAxis< Scalar > AngleAxisType
Definition Quaternion.h:61
EIGEN_DEVICE_FUNC Derived & operator=(const MatrixBase< OtherDerived > &m)
EIGEN_DEVICE_FUNC Derived & operator=(const AngleAxisType &aa)
Definition Quaternion.h:561
EIGEN_DEVICE_FUNC CoeffReturnType x() const
Definition Quaternion.h:66
EIGEN_DEVICE_FUNC CoeffReturnType z() const
Definition Quaternion.h:70
The quaternion class used to represent 3D orientations and rotations.
Definition Quaternion.h:274
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase< Derived > &other)
Definition Quaternion.h:303
EIGEN_DEVICE_FUNC Quaternion(const MatrixBase< Derived > &other)
Definition Quaternion.h:313
EIGEN_DEVICE_FUNC Coefficients & coeffs()
Definition Quaternion.h:340
static EIGEN_DEVICE_FUNC Quaternion FromTwoVectors(const MatrixBase< Derived1 > &a, const MatrixBase< Derived2 > &b)
_Scalar Scalar
Definition Quaternion.h:279
EIGEN_DEVICE_FUNC Quaternion(const AngleAxisType &aa)
Definition Quaternion.h:306
EIGEN_DEVICE_FUNC Quaternion()
Definition Quaternion.h:288
static EIGEN_DEVICE_FUNC Quaternion UnitRandom()
Definition Quaternion.h:679
EIGEN_DEVICE_FUNC Quaternion(const Scalar &w, const Scalar &x, const Scalar &y, const Scalar &z)
Definition Quaternion.h:297
QuaternionBase< Quaternion< _Scalar, _Options > > Base
Definition Quaternion.h:276
EIGEN_DEVICE_FUNC Quaternion(const Scalar *data)
Definition Quaternion.h:300
internal::traits< Quaternion >::Coefficients Coefficients
Definition Quaternion.h:284
EIGEN_DEVICE_FUNC const Coefficients & coeffs() const
Definition Quaternion.h:341
Base::AngleAxisType AngleAxisType
Definition Quaternion.h:285
Coefficients m_coeffs
Definition Quaternion.h:350
EIGEN_DEVICE_FUNC Quaternion(const Quaternion< OtherScalar, OtherOptions > &other)
Definition Quaternion.h:317
static EIGEN_STRONG_INLINE void _check_template_params()
Definition Quaternion.h:353
Common base class for compact rotation representations.
Definition RotationBase.h:30
EIGEN_DEVICE_FUNC const Derived & derived() const
Definition RotationBase.h:41
friend EIGEN_DEVICE_FUNC RotationMatrixType operator*(const EigenBase< OtherDerived > &l, const Derived &r)
Definition RotationBase.h:76
Expression of a fixed-size or dynamic-size sub-vector.
Definition VectorBlock.h:60
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition gnuplot_common_settings.hh:12
Map< Quaternion< double >, Aligned > QuaternionMapAlignedd
Definition Quaternion.h:478
Quaternion< double > Quaterniond
Definition Quaternion.h:366
Quaternion< float > Quaternionf
Definition Quaternion.h:363
Map< Quaternion< float >, 0 > QuaternionMapf
Definition Quaternion.h:469
Map< Quaternion< double >, 0 > QuaternionMapd
Definition Quaternion.h:472
Map< Quaternion< float >, Aligned > QuaternionMapAlignedf
Definition Quaternion.h:475
@ Aligned
Definition Constants.h:240
@ DontAlign
Definition Constants.h:325
@ AutoAlign
Definition Constants.h:323
@ ComputeFullV
Definition Constants.h:397
const unsigned int LvalueBit
Definition Constants.h:144
BNO055_QUATERNION_TypeDef quat
Definition imuExampleQuaternions.cpp:9
RealScalar s
Definition level1_cplx_impl.h:126
return int(ret)+1
Scalar * y
Definition level1_cplx_impl.h:124
Scalar EIGEN_BLAS_FUNC() dot(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
Definition level1_real_impl.h:49
@ Target
Definition Constants.h:492
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Definition MathFunctions.h:1091
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE internal::enable_if< NumTraits< T >::IsSigned||NumTraits< T >::IsComplex, typenameNumTraits< T >::Real >::type abs(const T &x)
Definition MathFunctions.h:1509
Namespace containing all symbols from the Eigen library.
Definition bench_norm.cpp:85
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:74
const AutoDiffScalar< Matrix< typename internal::traits< typename internal::remove_all< DerTypeA >::type >::Scalar, Dynamic, 1 > > atan2(const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b)
Definition AutoDiffScalar.h:654
Definition BandTriangularSolver.h:13
Definition BFloat16.h:88
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition NumTraits.h:233
Definition Meta.h:109
Definition Meta.h:148
Definition Quaternion.h:736
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion< Scalar > run(const QuaternionBase< Derived > &q)
Definition Quaternion.h:737
Definition Quaternion.h:488
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion< Scalar > run(const QuaternionBase< Derived1 > &a, const QuaternionBase< Derived2 > &b)
Definition Quaternion.h:489
static EIGEN_DEVICE_FUNC void run(QuaternionBase< Derived > &q, const Other &a_mat)
Definition Quaternion.h:819
Other::Scalar Scalar
Definition Quaternion.h:818
static EIGEN_DEVICE_FUNC void run(QuaternionBase< Derived > &q, const Other &vec)
Definition Quaternion.h:860
Other::Scalar Scalar
Definition Quaternion.h:859
Map< Matrix< _Scalar, 4, 1 >, _Options > Coefficients
Definition Quaternion.h:376
Map< const Matrix< _Scalar, 4, 1 >, _Options > Coefficients
Definition Quaternion.h:384
Quaternion< _Scalar, _Options > PlainObject
Definition Quaternion.h:262
Matrix< _Scalar, 4, 1, _Options > Coefficients
Definition Quaternion.h:264
Definition ForwardDeclarations.h:17
std::ptrdiff_t j
Definition tut_arithmetic_redux_minmax.cpp:2